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Multiplex allele-specific PCR to determine genotypes at statin metabolizing
SNP loci- rs1135840 and rs776746
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Abstract

Single nucleotide polymorphisms (SNPs) play crucial roles in determining the extent of susceptibility to various diseases as well as
actions of proteins involved in drug metabolism and transport. Statins are the first-line drugs for lowering cholesterol level and one
of the commonly prescribed classes of drugs to patients with cardiovascular diseases (CVD). CVDs are the most prevalent cause of
co-morbidity and mortality among patients with diabetes. Multiple studies have reported diabetogenic effect of statins. rs1135840 and
rs776746 are two SNPs that affect statin metabolism and consequently increase their concentration in the blood. We have developed a
simple, reliable and cost-effective allele specific PCR (ASPCR) based method to determine the genotypes at rs1135840 and rs776746
loci and applied to calculate the allele and genotypic frequencies in Bangladeshi population. Both rs1135840 and rs776746 variant
alleles are present at high frequencies (0.43 and 0.36, respectively) in Bangladeshi population. Although the percentage of homozygous
rs776746 variant genotype is relatively low (7.0%) in Bangladeshi population, homozygous rs1135840 variant frequency is quite high
(22.0%). On the other hand, 21.94% and 2.55% of the Bangladeshi individuals are heterozygous and homozygous, respectively, for both
variant alleles. The AS-PCR method described here may be used to optimize the dose of statin guided by an individual’s genotype and,

therefore, increase the efficacy of statin treatment.
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INTRODUCTION
3-hydroxy-3-methylglutaryl-coenzyme A reductase
(HMG-CoAR) inhibitors, more commonly known as statins,
are commonly prescribed as drugs to individuals suffering
from dyslipidemia [1]. Statins are taken to reduce the risks
of myocardial infarction, stroke and death due to CVDs [1].
Though their high efficacy and safety profiles as drugs to treat
dyslipidemia are well established, there have been reports
on dose-dependent adverse effects associated with statin
administration [2]. Multiple studies have reported association
between prolonged statin therapy and development of type
2 diabetes mellitus (T2DM) [3,4]. Statins also worsen
hyperglycemia in those with pre-existing diabetes or glucose
intolerance [5,6]. Though the benefits of statin intake
overweigh the associated risks [7], responses to statins vary
among individuals with some being more susceptible to the
adverse outcomes [8]. Therefore, individual specific dose
adjustments based on genetic profiles may reduce the risk of
developing diabetes and associated complications.

Studies have revealed certain genetic variants that
greatly influence the efficacy of statin therapy [9,10].
For instance, members of the P450 family of enzymes,
particularly the CYP enzyme system, are most significantly
involved in the phase I metabolism of different categories of
statins [11-13]. These enzymes have genetic variants, some
of which exert effects on their rates and extent of metabolism
[14]. Distribution of these variant alleles display significant
interethnic variability [13,15,16].

CYP2D6 is dominantly involved in the metabolism of
about 20% of all commonly used clinical drugs, including

statins [14,17,18]. One particular variant- rs1135840 in
CYP2D6 (c.4180G>C or p.Serd486Thr), plays roles in the
development of diabetes, hypertension, prostate cancer,
etc. Theoretically, poor metabolizers have higher levels of
statin in blood and subsequently face greater risk of adverse
effects [19,20]. CYP3AS5 is another drug-metabolizing
enzyme found in the liver and intestinal tissues. The
variant allele rs776746 (CYP3A5%*3) is one of the common
polymorphisms that reduces metabolism of several drugs
[21]. The variant allele of rs776746 leads to alternative
splicing and protein truncation, causing low or undetectable
CYP3AS activity [22-25]. Homozygous CYP3AS5*3
(mutant) individuals are termed non-expressors of CYP3AS5
[21]. Studies investigating interindividual pharmacokinetic
variability revealed that the mean plasma concentration of
simvastatin was very high in CYP3A5*3/*3 3 individuals
[26]. Several other studies correlated rs776746 variant
allele to poor metabolism and subsequent buildup of the
immunosuppressive drug tacrolimus beyond the safe dosage
level during organ transplantation [27-29].

Individuals who are more prone to developing diabetes
because of genetic predisposition, may become even more
susceptible due to secondary effects from drugs like statin.
Here we report a simple, reliable and cost-effective multiplex
method to determine genotypes at the rs1135840 and
1s776746 loci. Since significant interpopulation differences
exist in the variant allele frequencies of drug-metabolizing
genes [30], we applied this method to study the distribution
of these variants in Bangladeshi population to generate a
population specific representation.
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MATERIALS AND METHODS

Sample collection and DNA extraction: Buccal
swab samples were collected from random Bangladeshi
individuals upon approval from the ethics review committee
of the Faculty of Biological Sciences, University of Dhaka.
Buccal cells from the rinsed and clean mouths of the study
subjects were collected using sterile cotton swabs after
rubbing against the inner cheek wall around 10 times. The
swabs were air-dried for a while and carefully placed in
sterile separate collection tubes and stored at 4°C. DNA
was extracted from the collected buccal samples using the
PureLinkTM Genomic DNA Mini Kit (K1820-01, Thermo
Fisher Scientific Corp.) following the manufacturer’s
protocol.

Table 1: Primers used in the study.

Allele-specific multiplex PCR: Allele specific
primers were designed for the rs1135840 and rs776746 loci
following the principle described by Wangkumhang et al.
[31]. For each of the two loci, two separate allele-specific
forward primers and one common reverse primers were
designed (Table 1). Specificities of the designed primers
were checked in silico using the Primer-BLAST tool [32].
As an internal amplification control in PCR, a 255 bp region
of glucose phosphate isomerase (GPI) gene sequence was
amplified using human specific primers [33]. Temperature-
gradient PCR was performed in a thermal cycler (Gene Atlas
G; Astec Co. Ltd.) to obtain the common optimum annealing
condition for the primer pairs in multiplex PCR.

Gene Primer ID Primer Sequence, 5'—3' Amplicon size, bp

rs1135840 W Forward GTCTTTGCTTTCCTGGTGGC 282

CYP2D6 rs1135840 M Forward GTCTTTGCTTTCCTGGTGGG

rs1135840 Common Reverse GGATTATGGGCAAGGGTAAC
rs1135840 Sequencing | Forward TTCCTGCCTTTCTCAGCAGG 519
1s776746 W Forward | TGGTCCAAACAGGGAAGAGATTT 222

CYP3AS 1776746 M Forward | TGGTCCAAACAGGGAAGAGATTC
1s776746_Common Reverse GTCCTTGTGAGCACTTGATGA

rs776746_Sequencing Forward GGATGCTTACCCTTCGATTTGTG 546

10-50 ng of genomic DNA template was used for
amplification in a final reaction volume of 50 pL with 5
uL of 10x reaction buffer (S102, GeneON), 3.0 uL of 10
mM dNTP mix (110-002, GeneON), 1.0 uL of each primer
(10 uM), 0.3 uL of Maximo Taq DNA Polymerase (S102,
GeneON), and PCR grade water. All primers were purchased
from Macrogen Inc. (South Korea). In the negative control
PCR, an equal volume of PCR grade water was added
instead of genomic DNA. The reaction cycle condition was
as follows: an initial denaturation step at 94°C for 4 min,
then 34 cycles each with denaturation at 94°C for 30 sec,
annealing at 58°C for 1 min, and elongation at 72°C for 20
sec followed by a hold at 4°C. The PCR amplified sequences
were resolved in 1.5% agarose gel (0710, Amresco®) using
0.5x Tris-acetate-EDTA (TAE) buffer along with DNA size
markers (300003, GeneON). Amplicons were observed and
photographed in a gel documentation system (INFINITY
imaging system, Vilber) following incubation with ethidium
bromide (0492, Amresco®) in TAE buffer. The genotypes at
the rs1135840 and rs776746 loci were determined from the
banding pattern in the gel photographs.

DNA sequencing: A different primer in combination
with the common reverse primer (Table 1) for each locus
was used to amplify the corresponding SNP encompassing
region. 10-50 ng of genomic DNA template was used for
amplification in a final reaction volume of 25 pL with 2.5
uL of 10x reaction buffer (S102, GeneON), 0.75 uL of
10 mM dNTP mix (110-002, GeneON), 0.5 uL of each
primer (10 uM), 0.25 pL of Maximo Taq DNA Polymerase
(S102, GeneON) and PCR grade water. The reaction cycle
condition was as follows: an initial denaturation step at 94°C
for 4 min, then 34 cycles each with denaturation at 94°C
for 30 sec, annealing at 60.5°C for 1 min, and elongation at

72°C for 30 sec followed by a single elongation step at 72°C
for 5 min and hold at 4°C. The PCR amplified sequences
were resolved in 1.0% agarose gel (0710, Amresco®) using
0.5x Tris-acetate-EDTA (TAE) buffer along with DNA size
markers (300003, GeneON). Amplicons were observed in
a gel documentation system (INFINITY imaging system,
Vilber) following incubation with ethidium bromide
(0492, Amresco®) in TAE buffer. PCR products were
purified using the FavorPrepTM GEL/PCR Purification
Kit (FAGCK 001, Favorgen Biotech Corp.) following the
manufacturer’s protocol. The concentration and purity of
the purified PCR products were checked in a NanoDropTM
2000 spectrophotometer. Sequences of the purified PCR
products were obtained through commercial service from
Macrogen Inc. (South Korea). Sequences were analyzed
using SnapGene Viewer (GSL Biotech LLC).

Data analysis: The allele frequencies of rs1135840 and
rs776746 in the Bangladeshi population and genotypes at
these loci were calculated and presented using the Microsoft
Excel and the GraphPad Prism® software.

RESULTS AND DISCUSSION

In this study a multiplex allele specific PCR (AS-
PCR) method was developed and applied to determine
the genotypes at the rs1135840 and rs776746 loci (Figure
1). The GPI amplicon was used as an internal control in
PCR to avoid misleading genotypic interpretation [33].
Allele specific PCR data was confirmed by sequencing
the DNA regions encompassing the SNPs (Figure 2). The
DNA sequence chromatograms matched to the genotypes
predicted using the AS-PCR method.
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There are different methods for determining the
genotype of an individual for a specific SNP locus. Restriction
fragment length polymorphism (RFLP) method is one of the
most widely used methods. The main disadvantage of using
RFLP on a daily basis is that it is time-consuming, difficult
to scale up and often troublesome. A few other methods that
are also used for genotyping SNP of interest include next
generation sequencing (NGS), denaturing HPLC (DHPLC),
TagManTM SNP assay, SNaPshot sequencing, and PCR
with fluorescently labeled probe, etc. These methods require
highly expensive instrumentation and may not be easily
affordable. On the other hand, AS-PCR based genotyping is
inexpensive, easy to perform and, does not call for high-end
laboratory equipment. This method requires only a thermal
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cycler and horizontal gel electrophoresis system, which are
available in almost every molecular biology laboratory and
diagnostic centers around the globe.

However, there is always a possibility of technical error
in PCR. To avoid PCR bias, especially to get rid of technical
error, two special sets of primers were used. GPI gene-
specific primers were used as an internal control to eliminate
false-negative results. To avoid false positive results in AS-
PCR, primers were designed with an intentional insertion of
mis-match at the penultimate position based on the theory
described by Wangkumhang et al. [31]. We could combine
this method to a recently published protocol for detection
of SLC22A2 rs316019 variants associated with metformin
disposition through the Kidney (Figure 4) [33].
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Figure 1: Multiplex AS-PCR of CYP2D6 rs1135840 and CYP3AS rs776746 alleles. Amplified products were separated in
1.5% agarose gel in 0.5x TAE. GPI was used as an internal amplification control.

When we combined our experimental data to the
genotypes of 86 Bangladeshi individuals deposited in the
1000 genomes database [34], the variant allele frequencies
among 201 Bangladeshi individuals at rs1135840 and
15776746 loci were 0.43 and 0.36, respectively (Figure 3A).
This is quite similar to the global frequency data from the
1000 genome database (Figure 5). It is estimated that 40.1%
individuals carry the mutant allele at rs1135840 globally,
which is marginally lower than the frequency in Bangladesh
found in this experiment. On the other hand, variation at

rs776746 is found at a frequency of 0.379, slightly higher
than our population under study. 35.32% among these
201 Bangladeshi individuals are homozygous (G/G) for
the wild type allele, 42.79% are heterozygous (G/C) and
21.89% were homozygous (C/C) for the variant allele at
the rs1135840 locus (Figure 3B). At the rs776746 locus,
45.66% were homozygous (G/G) for the wild type allele,
7.31% homozygous (A/A) for the variant allele and 47.03%
heterozygous (G/A) (Figure 3B).
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Figure 2: Targeted sequencing to assess the multiplex AS-PCR data. A-D. DNA sequence chromatograms of representative
samples alongside the corresponding CYP2D6 rs1135840 and CYP3AS rs776746 AS-PCR data. A different pair of primers
(Table 1) was used in singleplex PCR to amplify the region encompassing the CYP2D6 rs1135840 and CYP3AS rs776746

sites for the sequencing purpose.

Figure 3C shows the proportion of Bangladeshi
individuals with different combinations of alleles at the
rs1135840 and 1s776746 loci. 2.55% of Bangladeshi
individuals possessed homozygous variant genotype (CC
AA) at both loci. 37.76% of the individuals had at least
one variant allele (GC_GA, GC_AA, CC_GA or CC_AA)
at both loci. 11.73% of the individuals were homozygous
for the variant alleles (CC_GG or GG_AA) at any one of
the loci. Using LDpair tool at LDlink suite [35] to assess
whether these variants are inherited non-randomly, we
found a D’ value of 0.0159 and r2 value of 0.0001 for the
Bangladeshi population, which suggest that the Bangladeshi
individuals having homozygous and heterozygous mutants
at both the loci inherited them completely by chance. This
is quite expected as rs1135840 and rs776746 are located in

chromosome 22 and 7, respectively.

CVDs have caused much global apprehension,
especially in recent years, due to its alarmingly high rate
of incidence worldwide. CVDs are the number 1 cause
of death globally with an estimated 17.9 million death in
2016 alone (WHO Fact sheet on CVD, available at- https://
www.who.int/news-room/fact-sheets/detail/cardiovascular-
diseases-(cvds)). Diabetes mellitus (DM) is another highly
concerning public health issues in today’s world. In the past
three decades, prevalence of this chronic metabolic disease
has risen dramatically in countries of all income levels. The
number of people suffering from diabetes is predicted to soar
up to 642 million by 2040 [36]. Each year almost 7 million
people develop diabetes and the number of deaths attributed
annually is around 3.2 million [2].
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Figure 3: Allele and genotype distribution at CYP2D6 rs1135840 and CYP3AS5 15776746 loci in Bangladeshi population.
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Figure 4: Multiplex AS-PCR of CYP2D6 rs1135840, CYP3AS5 15776746 and SLC22A2 15316019 alleles. Amplified
products were separated in 1.5% agarose gel in 0.5x TAE. GPI was used as an internal amplification control.
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The scenario in developing countries like Bangladesh
is quite perturbing. According to the International Diabetes
Federation (IDF), there were 6,926,300 cases of diabetes
in Bangladesh in 2017, which is equivalent to 6.9% of the
adults in Bangladesh. The number of diabetic patients in
Bangladesh is expected to rise over 13 million by 2045. Some
well-known factors partly held responsible for this soaring
trend include increased life expectancy of the population,
higher presence of certain risk factors, high use of tobacco,
physical inactivity, poor food habit, etc [37,38]. However,
there are definitely other contributing issues that need to be
addressed. Studies have revealed certain genetic variants
that may greatly increase bioavailability of statins. Although
statins are proven to be safe and effective for its relevant
treatment purpose, these have diabetogenic potential [4].
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Figure 5: Allelic distribution at CYP2D6 rs1135840 and CYP3AS rs776746 loci in world populations.

Some of these may directly or indirectly influence and play
a part in the rising prevalence of T2DM due to ‘non-tailored’
doses of statins prescribed for CVDs. The AS-PCR method
described here may be used to optimize the dose of statin
guided by an individual’s genotype and, therefore, increase
efficacy of statin treatment.
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