Abstract views: 127 / PDF downloads: 283



capsaicin, uterus, mast cell, cytokines, puberty and adult rat


Capsaicin is the active ingredient in cayenne pepper. Capsaicin is used in medicine and the pharmaceutical industry due to its physiological and pharmacological effect. Mast cell are scattered a long both external and internal surfaces of the body where they act as the first line defense. It is known that immune system cells and some cytokines secreted from these cells play a key role in the early stages of implantation. It is known that mast cells and many cytokines can indirectly affect hormonal mechanisms in the uterus. The aim of this study is to investigate the mast cell heterogeneity and numerical distribution in the uterus of capsaicin applied rats during different developmental periods. Forty Sprague Dawley female rats were used. Rats were divided into two groups as pubertal and adult, and each group was divided into two treatment groups. The first group remained without any treatment (control group), the second group (experimental-capsaicin treated group or CAP group) received daily subcutaneous injections of 1 mg/kg/day capsaicin and tissue samples were processed for conventional histology and for immunohistochemistry using the Streptavidin-Biotin Peroxidase method and a rabbit polyclonal anti-VR1 primary antibody. In the presented study the high expression of TNF-α and IFN-γ and mast cell number were observed in capsaicin group. In a conclusion, this study revealed the relationship between capsaicin, TNF-α, IFN-γ and mast cells in the uterus.


Sharma, S. K., Vij, A. S., Sharma, M. (2013): Mechanisms and clinical uses of capsaicin. European Journal of Pharmacology 720(1): 55-62.

Payan, D., Levine, J., Goetzl, E. (1984): Modulation of immunity and hypersensitivity by sensory neuropeptides. Journal of Immunology 132(4): 1601-1604.

Kim, C. S., Kawada, T., Kim, B. S., Han, I.S., Choe, S. Y. (2003): Capsaicin exhibits antiinflammatory property by inhibiting IkB‐a degradation in LPS‐stimulated peritoneal macrophages. Cell Signal 15: 299-306.

Klukovits, A., Gáspár, R., Sántha, P., Jancsó, G., Falkay, G. (2004): Role of capsaicin sensitive nerve fibers in uterine contractility in the rat. Biology of Reproduction 70(1):184-190.

Crivellato, E., Beltrami, C., Mallardi, F., Ribatti, D. (2004): The mast cell: an active participant or an innocent bystander? Histology & Histopathology 19(1): 259-270.

Eurell, J. A., Frappier, B. L. (2006): Dellman’s Textbook of Veterinary Histology. Blackwell Publishers, Oxford.

Gaytan, F., Carrera, G., Pinilla, L., Aguilar, R., Bellido, C. (1989): Mast cells in the testis, epididymis and accessory glands of the rat: effects of neonatal steroid treatment. Journal of Andrology 10(5):351-358.

Dekel, N., Gnainsky, Y., Granot, I., Mor, G. (2010): Inflammation and implantation. American Journal of Reproductive Immunology 63(1):17-21.

Erol, A. Y. G., Tokyol, C., Ozdemir, O., Yilmazer, M., Arioz, T. D., et al. (2011): The role of mast cells and angiogenesis in benign and malignant neoplasms of the uterus. Pathology - Research and Practice 207(10):618-622.

Blair, R. J., Meng, H., Marchese, M. J., Ren, S., Schwartz, L. B., et al. (1997): Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent angiogenic factor. The Journal of Clinical Investigation 99 (11): 2691-2700.

Metcalfe, D. D., Peavy, R. D., Gilfillan, A. M. (2009): Mechanisms of mast cell signaling in anaphylaxis. The Journal of Allergy and Clinical Immunology 124 (4): 639-646.

Dekel, N., Gnainsky, Y., Granot, I., Racicot, K., Mor, G. (2014): The role of inflammation for a successful implantation. American Journal of Reproductive Immunology 72 (2):141-147.

Fein, A., Kostina, E., Savion, S., Orenstein, H., Shepshelovich, J. et al. (2001): Expression of tumor necrosis factor-α in the pregnant uterus of diabetic mice: effect of maternal ımmunopotentiation. American Journal of Reproductive Immunology 4(2):161-168.

Platt, J. S., Hunt, J. S. (1998): Interferon-γ gene expression in cycling and pregnant mouse uterus: temporal aspects and cellular localization. Journal of Leukocyte Biology 64(3):393-400.

Bulla, R., Fischetti, F., Bossi, F., Tedesco, F. (2004): Feto-maternal immune interaction at the placental level. Lupus 13(9):625-629.

Ashkar, A. A., Di Santo, J. P., Croy, B. A. (2000): Interferon γ contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. Journal of Experimental Medicine 192(2):259-270.

Enerback, L. (1966): Mast Cells in Rat Gastrointestinal Mucosa: 2. Dye-binding and Metachromatic Properties. Acta Pathologica et Microbiologica Scandinavica 66:303-31.

Field, A. (2009): Discovering statistics using SPSS, Sage, London, pp. 234.

True, L. D. (1990): Principles of immunohistochemistry. In: True LD, (ed), Atlas of Diagnostic Immunohistopathologhy. Gower Medical Publishing, NewYork.

Tutuncu, S., Ertuğrul, T. (2019): Immunohistochemical expression of tryptase-chymase and mast cell heterogeneity in capsaicin-treated rat ovaries. International Journal of Veterinary and Animal Research 2(2):25-31.

Adams, E. J., Gren, J. A., Clark, A. H., Youngson, J. H. (1999): Comparison of Different Scoring Systems for Immunohistochemical Staining. Journal of Clinical Pathology 52(1):75–77.

Lin, T. J., Befus, A. D. (2002): Mast Cells in Mucosal Defensis and Pathogenesis. Mucosal Immunity. Academic Press; United States of America, pp.703.

Aydın, Y., Tunçel, N., Gürer, F., Tunçel, M., Koşar, M. et al. (1998): Ovarian, uterine and brain mast cells in female rats: cyclic changes and contribution to tissue histamine. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 120(2): 255-262.

Karaca, T., Yoruk, M., Uslu, S. (2007): Distribution and quantitative patterns of mast cells in ovary and uterus of rat. Archivos de Medicina Veterinaria 39(2): 135-139.

Eren, Ü., Sandıkçı, M., Sur, E., Boydak, M. (1997): Histological and histochemical studies on mast cells in mouse uterus at different phases of sexual cycle. Ankara Üniversitesi Veteriner Fakültesi Dergisi 44:117-126.

Kalkan, S., Soylu, R., Güngör, S., Cüce, H., Büyükmumcu, M. (1991): Gebe-postpartum rat uterusunda mast hücre sayısı. Selcuk Medical Journal 7:317-320.

Hayıroğlu, A. E., Karaca, T., Demirtaş, S. (2016): Streptozotocin-Induced diabetic that histochemical and immunohistochemical examination of mast cells distribution in ovary and uterus during different stages of estrous cycle in rats. The Journal of Kafkas Medical Sciences 6(1):29-37.

Sapmaz-Metin, M., Topcu-Tarladacalisir, Y., Kurt-Omurlu, I., Weller, B.K., Unsal-Atan, S. (2017): A morphological study of uterine alterations in mice due to exposure to cadmium. Biotechnic & Histochemistry 92(4):264-273.

Milne, S., Rakhyoot, A., Drudy, T., Brechin, S., Riley, S. et al. (2001): Co-localization of matrix metalloproteinase-1 and mast cell tryptase in the human uterus. Molecular Human Reproduction 7(6):559-565.

Zhu, T. H., Ding, S.J., Li, T. T., Zhu, L. B., Huang, X. F. et al. (2018): Estrogen is an important mediator of mast cell activation in ovarian endometriomas. Reproduction 155(1):73-83.

Al-Jefout, M., Black, K., Schulke, L., Berbic, M., Luscombe, G. et al. (2000): Novel finding of high density of activated mast cells in endometrial polyps. Fertility and Sterility 92 (3):1104-1106.

Anaf, V., Chapron, C., El Nakadi, I., De Moor, V., Simonart T et al. (2006): Pain, mast cells, and nerves in peritoneal, ovarian, and deep infiltrating endometriosis. Fertility and Sterility 86 (5):1336-1343.

Ivanisevic, M., Segerer, S., Rieger, L., Kapp, M., Dietl, J. et al. (2010): Antigen-presenting cells in pregnant and non-pregnant human myometrium. American Journal of Reproductive Immunology 64(3):188-196.

Payan-Carreira, R., Pires, M. A., Holst, B. S., Rodriguez-Martinez, H. (2011): Tumour necrosis factor in the canine endometrium: an immunohistochemical study. Reproduction in Domestic Animals 46(3):410-418.

Lalitkumar, P., Sengupta, J., Ghosh, D. (2005): Endometrial tumor necrosis factor α (TNFα) is a likely mediator of early luteal phase mifepristone-mediated negative effector action on the preimplantation embryo. Reproduction 129(3):323-335.

Von Wolff, M., Classen-Linke, I., Heid, D., Krusche, C., Beier-Hellwig, K. et al. (1999): Tumour necrosis factor-α (TNF-α) in human endometrium and uterine secretion: an evaluation by immunohistochemistry, ELISA and semiquantitative RT–PCR. Molecular Human Reproduction 5(2):146-152.

Sierra-Mondragón, E., Gómez-Chávez, F., Murrieta-Coxca, M., Vázquez-Sánchez, E.A., Martínez-Torres, I. et al. (2015): Low expression of IL-6 and TNF-α correlates with the presence of the nuclear regulators of NF-κB, IκBNS and BCL-3, in the uterus of mice. Molecular Immunology 68(2):333-340.

Boric, M., Torres, M., Pinto, C., Pino, M., Hidalgo, P. et al. (2013): TNF system in eutopic endometrium from women with endometriosis. Open Journal of Obstetrics and Gynecology 3:271-278.

Uyar, Y., Neşe, N., Baytur, Y., Yıldız, H., İnceboz, Ü. et al. (2009): Bcl-2 antigen and TNF-alpha expression in myomas. Turkiye Klinikleri Journal of Gynecology and Obstetrics 19(5):249-254.

Hu, Z. Q., Kobayashi, K., Zenda, N., Shimamura, T. (1997): Tumor necrosis factor-α–and interleukin-6–triggered mast cell development from mouse spleen cells. Blood 89 (2): 526-533.

Albrecht, M., Frungieri, M. B., Kunz, L., Rämsch, R., Meineke, V. et al. (2005): Divergent effects of the major mast cell products histamine, tryptase and TNF-alpha on human fibroblast behaviour. Cellular and Molecular Life Sciences 62 (23):2867-2876.

Woolley, D. E., Tetlow, L. C. (1999): Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Arthritis Research and Therapy 2(1):1-10.

Unsal, A. I. A., Kocaturk, T., Gunel, C., Meteoglu, I., Omurlu, I. K. et al. (2018): Effect of Pycnogenol® on an experimental rat model of allergic conjunctivitis. Graefe's Archivefor Clinical and Experimental Ophthalmology 256(7):1299-1304.

Pyo, M. Y., Park, B. K., Choi, J. J., Yang, M., Yang, H. O. et al. (2013): Pheophytin a and chlorophyll a identified from environmentally friendly cultivation of green pepper enhance interleukin-2 and interferon-γ in Peyer's patches ex vivo. Biological and Pharmaceutical Bulletin 36(11):1747-1753.

Huang, B., Huang, S., Chen, Y., Zheng, H., Shen, J. et al. (2013): Mast cells modulate acute toxoplasmosis in murine models. Public Library of Science 8(10): e77327.

Kim, H., Kim, J. R., Kang, H., Choi, J., Yang, H. et al. (2014): 7, 8, 4′-Trihydroxyisoflavone attenuates DNCB-induced atopic dermatitis-like symptoms in NC/Nga mice. PLoS One (8): e104938.

Cencič, A., Guillomot, M., Koren, S., La Bonnardière, C. (2003): Trophoblastic interferons: do they modulate uterine cellular markers at the time of conceptus attachment in the pig? Placenta 24(9):862-869.




How to Cite

Tutuncu, S., & Ertugrul, T. (2022). MAST CELL DENSITY AND EXPRESSION OF TRYPTASE, IFN-γ, TNF-α IN CAPSAICIN-TREATED RAT UTERUS. Journal of Applied Biological Sciences, 16(1), 169–181. Retrieved from