ISOLATION AND CHARACTERIZATION OF POTENTIAL BIOCONTEROL RHIZOSPHERIC BACTERIA EFFECTIVE AGAINST WHITE ROT (SCLEROTIUM CEPIVORUM BERK) AFFECTING GARLIC (ALLIUM SATIVUM L.) UNDER LABORATORY CONDITIONS
DOI:
https://doi.org/10.71336/jabs.1181Keywords:
Biocontrol, Garlic, phenotypic characterization, Rhizobacteria, White rotAbstract
Garlic (Allium sativum L.) is the second most widely used Allium used as food, medicinal, condiment and cash crop vegetable. Its productivity and yield is affected by both abiotic and biotic factors. One of the biotic agents that aggressively attack garlic is white rot (Sclerotium cepivorum). The main aim of this study was to isolate and screen potential antagonists for controlling this pathogen. Consequently, 23 rhizospheric bacterial isolates were screened. The isolates’ biocontrol potential against the pathogen was tested under both laboratory and greenhouse conditions using microbiological procedures. Among these isolates, 11 (47.8%) of them inhibited the radial growth of the pathogen with growth inhibition zone ranging 60 - 88%. The isolates also showed wide morphological and cultural diversity. Nine (82.8%) of the isolates solubilized phosphate at a solubilization index ranging from 2.3-3.72 cm. Among the isolates 6(54. 6%), 10(90.9%), 5 (45.5%), 100% and 5 (45.5%) were chitinase, cellulase, protease, ammonia and cyanide producers, respectively. Of the biocontrol traits tested, 6 (54.55%) of them were endowed with all the expected biocontrolling characteristics. Most of the isolates showed high resistance to extreme environmental stresses including pH, temperature and salt concentrations. Moreover, the isolates also showed high tolerance to the tested antibiotics and heavy metals. In the all the tested parameters conducted under laboratory conditions, isolates WUGR-8, WUGR-14 and AAUGPR- 92 showed the top performance. Consequently, these isolates can be recommended as candidate microbial inoculants for greenhouse applications.
References
Rubatzky, V.E., and Yamaguchi, M. (1997): World vegetable. Principles, production and nutritive values. Second edition. Chapman and hall. International Thomson publishing New York. USA. 843p.
Higdon, J. (2005): Linus Pauling Institute Micronutrient Center http://lpi.oregonstate.edu/infocenter/index.html.
Kilgori, M., MagaJi M. and Yakubu, A. 2007 (a): Effect of plant spacing and date of planting on yield of two garlic (Allium Sativum L.) cultivars in Sokoto, Nigeria. American-Eurasian Journal of Agricultural & Environmental Science 2(2): 153-157.
Maly, I., Bartos, J., Hlusek, J., Kopec, K., Peteikova, K., Rod, J. & Spitz, P. (1998): Polni zelina_stvi. Agrospoj Praha, 175–185.
Kim, HK. (2016): Garlic supplementation ameliorates UV-induced photoaging in hairless mice by regulating antioxidative activity and MMPs expression. Mol 21: 1-70. DOI 10.3390/molecules21010070. DOI: https://doi.org/10.3390/molecules21010070
Pulseglove, SW. (1992): Tropical Crops, Monocotyledons. Vol. 2, Longman Group Ltd., London, 20-140.
Central Agricultural Census Commission, CACC (2002): Report on the preliminary result of area, production and yield of temporary crops (Meher season private peasant holdings). Part II. Ethiopian Agricultural sample Enumeration, 2001/2002: Federal Democratic Republic of Ethiopia, Central Statistical Authority; Addis Ababa.
Velisek J, Kubec & RJ, Davidek (1997): Chemical composition and classification of culinary and pharmaceutical garlic-based products. Z Lebensem Unters Forsch 24 (2): 161 -164. DOI: https://doi.org/10.1007/s002170050054
MoARD (Ministry of Agriculture and Rural Development) (2007): Crop Variety Register. Ministry of Agricultural and Rural Development, Addis Ababa, Ethiopia
CSA (Central Statistical Agency). (2012): Report on area and production of crops (Meher season private peasant holdings). Volume IV, Part III. Ethiopian Agricultural Sample.
Kassahun, S., Berhanu, B., Arega, F. and Salveraj, T. (2015): Evaluation of Trichoderma Species for The Control of Garlic White Rot Disease (Sclerotium Cepivorum). J Advan Agric Sci Technol 3(5): 57-65.
Coley-Smith, J.R., Parfitt, D., Taylor, I.M. (1987): Studies of dormancy in sclerotia of Sclerotium cepivorum Berk. Plant Pathol 36: 594–599. DOI: https://doi.org/10.1111/j.1365-3059.1987.tb02279.x
Wu, B. M., Subbarao, K.V. and Liu, Y.B. (2008): Comparative survival of sclerotia of Sclerotinia minor and S. sclerotiorum. Phytopathology 98:659- 665. DOI: https://doi.org/10.1094/PHYTO-98-6-0659
Vassilev, N., Vassileva, M. and Nikolaeva, I. (2006): Simultaneous P-solubilizing and biocontrol activity of microorganisms: potential and future trends. Appl Environ Microbiol 71: 137–144. DOI: https://doi.org/10.1007/s00253-006-0380-z
Rini CR, Sulochana, KK (2007): Usefulness of Trichoderma and Pseudomonas against Rhizoctonia solani and Fusarium oxysporum infecting tomato. J.Trop. Agric 45: 21–28.
Muleta D, Assefa F, Granhall, U. (2007) In vitro Antagonism of Rhizobacteria Isolated from Coffea arabica L. against Emerging Fungal Coffee Pathogens. Eng Life Sci 7(6): 577–586. DOI: https://doi.org/10.1002/elsc.200700004
Sivasakthi, S., Usharani, G. and Saranraj, P. (2014): Biocontrol potentiality of plant growth promoting bacteria (PGPR) - Pseudomonas fluorescens and Bacillus subtilis: A review: Afr J Agric Res 9: 1265-1277.
Shafi, J., Tian, H. and Mingshan, J. (2017): Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotechnol Equip 31(3): 446–459. DOI: https://doi.org/10.1080/13102818.2017.1286950
Somasegaran, P. and Hoben, H. J. (1994): Handbook for rhizobia: methods in legumeRhizobium technology. Springer Science and Business Media.source of nitrogen. 7:14- 20. DOI: https://doi.org/10.1007/978-1-4613-8375-8
Adal M., Tadege M. and Fassil, A. (2018): Rhizospheric bacterial isolates of grass pea (Lathyrus sativus L.) endowed with multiple plant growth promoting traits. Journal of Applied Microbiology 1-16.
Krishna, M. S. R., Sharmila, T., Raaga, K., Sri Deepthi, R. and Aswini A. (2016): In vitro antifungal activity of Trichoderma strains on pathogenic fungi inciting hot pepper (Capsicumannuum L.). J. Chem. Pharm. Res 8(4): 425-430.
Ciements F.E., Shear C.L. (1957): The Genera Of Fungi Hafner Publishing Co. New York ,pp.iv+496pp.
Landa, B.B., Hervas, A., Bethiol, W. and Jimenez-Diaz, R.M. (1997): Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceris. Phytoparasitica 25: 305–318. DOI: https://doi.org/10.1007/BF02981094
Nautiyal, C.S. (1999): An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170: 265–270. DOI: https://doi.org/10.1016/S0378-1097(98)00555-2
Buck, JD. (1982). Non-staining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44(4): 992– 993. DOI: https://doi.org/10.1128/aem.44.4.992-993.1982
Nisa, R.M., Irni, M., Amaryllis, A., Sugeng, S. and Iman, R. (2010): Chitinolytic bacteria isolated from chili rhizosphere: chitinase characterization and its application as biocontrol for whitefly (Bemisia tabaci Genn). AJABS 5: 430–435. DOI: https://doi.org/10.3844/ajabssp.2010.430.435
Samanta, R., Pal, D. and Sem, S.P. (1989): Production of hydrolases by N-fixing microorganisms. Biochem Physiol Pflanz 185: 75–81. DOI: https://doi.org/10.1016/S0015-3796(89)80160-X
Smibert, R.M. and Krieg, N.R. (1994): Phenotypic characterization. In Methods for General and Molecular Bacteriology ed. Gerhardt, P., Murray, R.G.E., Wood, W.A. and Krieg, N.R. pp. 607–654. Washington DC: American Society of Microbiology.
Lorck, H. (2004): Production of hydrocyanic acid by bacteria. Plant Physiol 1: 142–146. DOI: https://doi.org/10.1111/j.1399-3054.1948.tb07118.x
Cappuccino, J. C and Sherman, N. (1992): Microbiology: “A Laboratory Manual“, 3rd edition Benjamin/Cummings, New York, NY, USA.
Laskar, F. and Sharma, G. D. (2013): Isolation and Characterisation of Diazotrophic Bacteria from Rhizosphere of Different Rice Cultivars of South Assam, India. Curr. World Environ 8(1):157-163 DOI: https://doi.org/10.12944/CWE.8.1.20
Loper, J. E. and Schroth, M. N. (1986): Influence of bacterial sources of indole-2-acetic acid on root elongation of sugar beet. Phytopath 76:386- 389. DOI: https://doi.org/10.1094/Phyto-76-386
Bernal, G. and Graham, P. H. (2001): Diversity in the rhizobia associated with Phaseolus vulgaris L. in Ecuadore and comparisons with Mexican bean rhizobia. Can. J. Microbiol 47: 526-534. DOI: https://doi.org/10.1139/w01-037
Lupwayi, N.Z. and Haque, I. (1994): Working Document: Legume-Rhizobium Technology Manual pp. 1–40. Addis Ababa, Ethiopia: Environmental Science Division International Livestock Center for Africa.
Mohamed, H.A.A., Fatthy, M.M. and Abdel-Wahab, E.T. (2012): Isolation and characterization of a heavy-metal resistant isolate of Rhizobium leguminosarum bv. Viciae potentially applicable for biosorption of Cd2+ and Co2+. Int Biodeterior Biodegrad 67: 48–55. DOI: https://doi.org/10.1016/j.ibiod.2011.10.008
Amarger, N., Macheret, V. and Laguerre, G. (1997): Rhizobium gallicum sp. Nov. and Rhizobium giardinii sp. Nov. from Phaseolus vulgaris. Int Syst Bactriol 47: 996–1006. DOI: https://doi.org/10.1099/00207713-47-4-996
Mohammed Amin, Shiberu Tadele and Thangavel Selvaraj. (2014): White rot (Scelerotium cipivorum Berk)-an aggressive pest of onion and garlic in Ethiopia: an overview, Journal of Agricultural Biotechnology & Sustainable Development 6(1): 6 -15. DOI: https://doi.org/10.5897/JABSD2013.0210
Rahman, M.M.E., Hossain, D.M., Suzuki, K., Shiiya, A., Suzuki, K., Dey, T.K., Nonaka, M. & Harada, N. (2016): Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathol 45:103–117. DOI: https://doi.org/10.1007/s13313-016-0397-4
Kavitha, T., Nelson, R. and Josephin, J.S. (2013): Screening of Rhizobacteria for plant growth promoting traits and antifungal activity against charcoal rot pathogen Macrophomina phaseolina. Int J Pharm Biol Sci 4: 177–186.
Ordentlich, A., Elad, Y. and Chet, I. (1988): The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsi. Phytopathology 78: 84–88. DOI: https://doi.org/10.1094/Phyto-78-84
Geetha, K., Rajithasri, A.B. and Bhadraiah, B. (2014): Isolation of Plant growth promoting rhizobacteria from rhizosphere soils of green gram, biochemical characterization and screening for antifungal activity against pathogenic fungi. Int J Pharm Sci Invent 3: 47–54.
Verma, J.P., Yadav, J. and Tiwari, K.N. (2012): Enhancement of nodulation and yield of chickpea by co-inoculation of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria in Eastern Uttar Pradesh. Commun Soil Sci Plant Anal 43: 605–621. DOI: https://doi.org/10.1080/00103624.2012.639110
Rajeshwar, R.T., Prasad, V.R. and Vemaraju, A. (2014): PGPR: A potential tool for sustainable agriculture: a review. J Sci 4: 117–122.
Mulissa, J.M., Löscher, C. R., Schmitz, R. A., and Fassil, A. (2015): Characterization of phosphate solubilizing rhizobacteria isolated from lentil growing areas of Ethiopia. Afr. J. Microbiol. Res 9(25):1637-1648 DOI: https://doi.org/10.5897/AJMR2015.7473
Mulissa, J.M., Löscher, C. R., Schmitz, R. A., and Fassil, A. (2016): Phosphate solubilization and multiple plant growth promoting properties of rhizobacteria isolated from chickpea (Cicer aeritinum L.) producing areas of Ethiopia. Afr J Biotechnol 15(35): 1899-1912. DOI: https://doi.org/10.5897/AJB2015.15172
Asmamaw, M., Faris, H. and Mussa, A. (2022): Plant Growth Promoting and Abiotic Stress Tolerant Chickpea (Cicer arietinum L.) Rhizobial Isolates from Some Areas of South Wollo Zone, Ethiopia. Advances in Agriculture 1-10. DOI: https://doi.org/10.1155/2022/6381143
Gedefaw, W. and Mussa, A. (2021): Isolation and Characterization of Chickpea (Cicer arietinum L.) Nodulating Rhizobia Collected from South Wollo Zone, Ethiopia. International Journal of Agronomy 1-11. DOI: https://doi.org/10.1155/2021/7938399
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.