Phytochemical analysis of various solvent extracts of mangrove plant associated Bacillus spp.
DOI:
https://doi.org/10.71336/jabs.1400Keywords:
Bioactive compounds, Solvent extraction, Qualitative analysisAbstract
The aim of the study is to investigate which groups are been produced by mangrove associated bacterial species and to check the effectiveness of the solvents in extracting specific bioactive compound groups. Mangrove associated microbial habitat are proven to produce potential bioactive compounds. In the present study, mangrove plants associated Bacillus spp. were bulk grown in the culture broth and the phytochemicals produced were extracted using various solvents viz. butanol, chloroform, ethyl acetate and hexane. The phytochemical testing of these extracts discovered that butanol extracted alkaloid and emodin group of phytochemicals, chloroform extracted phytosterols, anthraquinones and leucoanthrocyanins, hexane extracted phytosterol and emodin groups of bioactive compounds and ethyl acetate extracted phytosterols. The experiment was carried out thrice and every time the results obtained were the same. According to the previous studies we can say that these phytochemicals can be used for new drug discovery and for formulating various pharmaceutical products. Further advanced research on the purification and identification of these compounds can be carried out using techniques like GC-MS and column chromatography. These compounds can further be tested and applied to specific applications.
References
Patra J.K., Dhal N.K., Thatoi H.N. (2011): In vitro bioactivity and phytochemical screening of Suaeda maritima (Dumort): A mangrove associate from Bhitarkanika, India. Asian Pacific Journal of Tropical Medicine, 727-734. https://doi.org/10.1016/S1995-7645(11)60182-X DOI: https://doi.org/10.1016/S1995-7645(11)60182-X
Tangjitjaroenkun, J., Pluempanupat, W., Tangchitcharoenkhul, R., Yahayo, W., & Supabphol, R. (2021): Antibacterial, antioxidant, cytotoxic effects and GC-MS analysis of mangrove-derived Streptomyces achromogenes TCH4 extract. Archives of Biological Sciences, 73(2), 223-235. https://doi.org/10.2298/ABS210320017T DOI: https://doi.org/10.2298/ABS210320017T
Dechavez, R., Calub, M. L., Genobata, D. R., Balacuit, R., Jose, R., & Tabugo, S. R. (2022): Identification of culture-dependent microbes from mangroves reveals dominance of Bacillus including medically important species based on DNA signature. Biodiversitas, 23(10), 5342-5350. https://doi.org/10.13057/biodiv/d231044 DOI: https://doi.org/10.13057/biodiv/d231044
Rajan, L., Chakraborty, K., & Chakraborty, R. D. (2021): Pharmacological properties of some mangrove sediment associated Bacillus isolates. Archives of Microbiology, 203, 67–76. https://doi.org/10.1007/s00203-020-01999-5 DOI: https://doi.org/10.1007/s00203-020-01999-5
Dat, T.T.H., Oanh, P.T.T., Cuong, L.C.V., Anh, L.T., Minh, L.T.H., Ha, H.; Lam, L.T., Cuong, P.V.; Anh, H.L.T. (2021): Pharmacological Properties, Volatile Organic Compounds, and Genome Sequences of Bacterial Endophytes from the Mangrove Plant Rhizophora apiculata Blume. Antibiotics, 10(1491), 1-23. https://doi.org/10.3390/antibiotics10121491 DOI: https://doi.org/10.3390/antibiotics10121491
Munshi, M., Sohrab, M., Begum, M. et al. (2021): Evaluation of bioactivity and phytochemical screening of endophytic fungi isolated from Ceriops decandra (Griff.) W. Theob, a mangrove plant in Bangladesh. Clin Phytosci 7, 81. https://doi.org/10.1186/s40816-021-00315-y DOI: https://doi.org/10.1186/s40816-021-00315-y
Karnati, R., Bhaskara R.T., Sharma G.V.R. and Murali K.R. (2017): Antimicrobial Activities of Extracts of Some Species of Mangrove Plants and a New Compound Isolated Towards some Selected Strains. Oriental Journal of Chemistry, 33(2), 1011-1016. https://doi.org/10.13005/ojc/330256 DOI: https://doi.org/10.13005/ojc/330256
Nurunnabi, T. R., Sabrin, F., Sharif, D. I., Nahar, L., Sohrab, M. H., Sarker, S. D., ... & Billah, M. M. (2020): Antimicrobial activity of endophytic fungi isolated from the mangrove plant Sonneratia apetala (Buch. Ham) from the Sundarbans mangrove forest. Advances in Traditional Medicine, 20, 419–425. https://doi.org/10.1007/s13596-019-00422-9 DOI: https://doi.org/10.1007/s13596-019-00422-9
Sangkanu, S., Rukachaisirikul, V., Suriyachadkun, C., & Phongpaichit, S. (2017): Evaluation of antibacterial potential of mangrove sediment-derived actinomycetes. Microbial Pathogenesis, 112, 303-312. https://doi.org/10.1016/j.micpath.2017.10.010 DOI: https://doi.org/10.1016/j.micpath.2017.10.010
Ramasubburayan, R., Sumathi, S., Bercy, D. M., Immanuel, G., & Palavesam, A. (2015): Antimicrobial, antioxidant and anticancer activities of mangrove associated bacterium Bacillus subtilis subsp. subtilis RG. Biocatalysis and Agricultural Biotechnology, 4(2) 158-165. https://doi.org/10.1016/j.bcab.2015.01.004 DOI: https://doi.org/10.1016/j.bcab.2015.01.004
Pranuthi, E.K., Narendra, K., Swathi, J., Sowjanya, K.M., Reddi K.V.N. Rathnakar, Emmanuel S.J Rev Fr. S., Satya A. Krishna (2014): Qualitative Assessment of Bioactive Compounds from a Very Rare Medicinal Plant Ficus dalhousiae Miq. Journal of Pharmacognosy and Phytochemistry; 3 (1): 57-61.
Jia, S., Su, X., Yan, W., Wu, M., Wu, Y., Lu, J., ... & Xue, Y. (2021). Acorenone C: A New Spiro Sesquiterpene from a Mangrove Associated Fungus, Pseudofusicoccum sp. J003. Front. Chem. 9:780304. https://doi.org/10.3389/fchem.2021.780304 DOI: https://doi.org/10.3389/fchem.2021.780304
Sopalun, K., Laosripaiboon, W., Wachirachaikarn, A., & Iamtham, S. (2021): Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with thai mangrove plants, South African Journal of Botany, 141, 66-76. https://doi.org/10.1016/j.sajb.2021.04.031 DOI: https://doi.org/10.1016/j.sajb.2021.04.031
Karthik, Y., Ishwara Kalyani, M., Krishnappa, S., Devappa, R., Anjali Goud, C., Ramakrishna, K., ... & Mushtaq, M. (2023): Antiproliferative activity of antimicrobial peptides and bioactive compounds from the mangrove Glutamicibacter mysorens. Front. Microbiol. 14:1096826. https://doi.org/10.3389/fmicb.2023.1096826 DOI: https://doi.org/10.3389/fmicb.2023.1096826
Yu, Y., Wang, Z., Xiong, D., Zhou, L., Kong, F., Wang, Q (2024): New Secondary Metabolites of Mangrove-Associated Strains. Mar. Drugs, 22, 372. https://doi.org/10.3390/md22080372 DOI: https://doi.org/10.3390/md22080372
Heinrich, M.; Mah, J.; Amirkia, V. (2021): Alkaloids Used as Medicines: Structural Phytochemistry Meets Biodiversity - An Update and Forward Look. Molecules, 26, 1836. https://doi.org/10.3390/molecules26071836 DOI: https://doi.org/10.3390/molecules26071836
Zheng, Q., Li, S., Li, X. et al (2021): Advances in the study of emodin: an update on pharmacological properties and mechanistic basis. Chin Med 16, 102. https://doi.org/10.1186/s13020-021-00509-z DOI: https://doi.org/10.1186/s13020-021-00509-z
Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L. H., El Omari, N., ... & Bouyahya, A. (2022): Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants, 11, 1912. https://doi.org/10.3390/antiox11101912 DOI: https://doi.org/10.3390/antiox11101912
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.