Protective effects of Satureja hortensis on DNA damage and reproduction performance in lead-exposed Drosophila melanogaster

Authors

DOI:

https://doi.org/10.71336/jabs.1438

Keywords:

Satureja hortensis, Drosophila melanogaster, lead, reproductive performance, DNA damage

Abstract

Lead is considered one of the most dangerous heavy metals for human health and can be found in the environment, as well as in food and products. Satureja hortensis, commonly known as savory, is a plant used to treat various diseases in folk medicine. This study aims to determine the effects of the ethanol extract of S. hortensis on reproductive performance and DNA damage in lead-exposed Drosophila melanogaster. The plant's ethanol extract was obtained using the maceration method. After applying the extract and lead to D. melanogaster experimental groups for 15 days, their reproductive performance (adult female and fly formation, as well as pupal counts) and DNA damage levels were investigated using the Comet assay. The results showed that lead reduced reproductive performance and pupal development in D. melanogaster and caused DNA damage. However, when S. hortensis extract was applied together with lead, reproductive performance and pupal development in D. melanogaster increased quantitatively, while DNA damage decreased. In conclusion, S. hortensis exhibited a protective effect in lead-exposed D. melanogaster and can play an antigenotoxic role against lead and other metal.

References

Göktaş, Ö., Gıdık, B. (2019): Tıbbi ve aromatik bitkilerin kullanım alanları. Bayburt Üniversitesi Fen Bilimleri Dergisi, 2(1), 145-151. DOI: https://doi.org/10.33723/rs.596673

Satıl, F., Dirmenci, T., Tümen, G., Turan, Y. (2008): Commercial and ethnic uses of Satureja (Sivri Kekik) species in Turkey. Ekoloji, 17, 67, 1-7. DOI: https://doi.org/10.5053/ekoloji.2008.671

Baytop, T. (1999). Türkiye’de Bitkilerle Tedavi, Nobel Tıp Kitapevleri Yayını, 2. Baskı, 480s, İstanbul.

Arslan, D., & Katar, Y. (2011). Ankara ekolojik koşullarında sater (Satureja hortensis L) bitkisinde uçucu yağ ve bileşenlerinin ontogenetik varyabilitesinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 8(2), 29-36.

Güllüce, M., Sökmen, M., Daferera, D., Aǧar, G., Özkan, H., Kartal, N.,….. & Şahin, F. (2003). In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. Journal of agricultural and food chemistry, 51(14), 3958-3965. DOI: https://doi.org/10.1021/jf0340308

Kurkcuoglu, M., Tumen, G., & Baser, K. H. C. (2001). Essential oil constituents of Satureja boissieri from Turkey. Chemistry of Natural Compounds, 37(4), 329-331. DOI: https://doi.org/10.1023/A:1013714316862

Momtaz, S., & Abdollahi, M. (2010). An update on pharmacology of Satureja species; from antioxidant, antimicrobial, antidiabetes and anti-hyperlipidemic to reproductive stimulation. DOI: https://doi.org/10.3923/ijp.2010.346.353

Kotan, R., Dadasoğlu, F., Karagoz, K., Cakir, A., Ozer, H., Kordali, S., ... & Dikbas, N. (2013). Antibacterial activity of the essential oil and extracts of Satureja hortensis against plant pathogenic bacteria and their potential use as seed disinfectants. Scientia horticulturae, 153, 34-41. DOI: https://doi.org/10.1016/j.scienta.2013.01.027

Ćetković, G. S., Čanadanović-Brunet, J. M., Djilas, S. M., Tumbas, V. T., Markov, S. L., & Cvetković, D. D. (2007). Antioxidant potential, lipid peroxidation inhibition and antimicrobial activities of Satureja montana L. subsp. kitaibelii extracts. International Journal of Molecular Sciences, 8(10), 1013-1027. DOI: https://doi.org/10.3390/i8101013

Amanlou, M., Dadkhah, F., Salehnia, A., Farsam, H., & Dehpour, A. R. (2005). An anti-inflammatory and anti-nociceptive effects of hydroalcoholic extract of Satureja khuzistanica Jamzad extract. J Pharm Pharm Sci, 8(1), 102-106.

Mchedlishvili, D., Kuchukashvili, Z., Tabatadze, T., & Davitaia, G. (2005). Influence of flavonoids isolated from Satureja hortensis L. on hypercholesterolemic rabbits. Indian journal of pharmacology, 37(4), 259. DOI: https://doi.org/10.4103/0253-7613.16577

Kumar, A., Kumar, A., MMS, C. P., Chaturvedi, A. K., Shabnam, A. A., Subrahmanyam, G., ... & Yadav, K. K. (2020). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International journal of environmental research and public health, 17(7), 2179. DOI: https://doi.org/10.3390/ijerph17072179

Mani, M. S., Kabekkodu, S. P., Joshi, M. B., & Dsouza, H. S. (2019). Ecogenetics of lead toxicity and its influence on risk assessment. Human & Experimental Toxicology, 38(9), 1031-1059. DOI: https://doi.org/10.1177/0960327119851253

Singh, N., Kumar, A., Gupta, V. K., & Sharma, B. (2018). Biochemical and molecular bases of lead-induced toxicity in mammalian systems and possible mitigations. Chemical Research in Toxicology, 31(10), 1009-1021. DOI: https://doi.org/10.1021/acs.chemrestox.8b00193

Thier, R., Bonacker, D., Stoiber, T., Böhm, K. J., Wang, M., Unger, E., ... & Degen, G. (2003). Interaction of metal salts with cytoskeletal motor protein systems. Toxicology letters, 140, 75-81. DOI: https://doi.org/10.1016/S0378-4274(02)00502-7

Bonacker, D., Stoiber, T., Böhm, K. J., Prots, I., Wang, M., Unger, E., ... & Degen, G. H. (2005). Genotoxicity of inorganic lead salts and disturbance of microtubule function. Environmental and Molecular Mutagenesis, 45(4), 346-353. DOI: https://doi.org/10.1002/em.20100

Pasha Shaik, A., Sankar, S., Reddy, S. C., Das, P. G., & Jamil, K. (2006). Lead-induced genotoxicity in lymphocytes from peripheral blood samples of humans: in vitro studies. Drug and chemical toxicology, 29(1), 111-124. DOI: https://doi.org/10.1080/01480540500408739

Pandey, U. B., & Nichols, C. D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological reviews, 63(2), 411-436. DOI: https://doi.org/10.1124/pr.110.003293

Miguel-Aliaga, I., Jasper, H., & Lemaitre, B. (2018). Anatomy and physiology of the digestive tract of Drosophila melanogaster. Genetics, 210(2), 357-396. DOI: https://doi.org/10.1534/genetics.118.300224

Soares, J. J., Rodrigues, D. T., Gonçalves, M. B., Lemos, M. C., Gallarreta, M. S., Bianchini, M. C., ... & Denardin, E. L. (2017). Paraquat exposure-induced Parkinson’s disease-like symptoms and oxidative stress in Drosophila melanogaster: Neuroprotective effect of Bougainvillea glabra Choisy. Biomedicine & Pharmacotherapy, 95, 245-251. DOI: https://doi.org/10.1016/j.biopha.2017.08.073

Foriel, S., Willems, P., Smeitink, J., Schenck, A., & Beyrath, J. (2015). Mitochondrial diseases: Drosophila melanogaster as a model to evaluate potential therapeutics. The International Journal of Biochemistry & Cell Biology, 63, 60-65. DOI: https://doi.org/10.1016/j.biocel.2015.01.024

Kreipke, R. E., Kwon, Y. V., Shcherbata, H. R., & Ruohola-Baker, H. (2017). Drosophila melanogaster as a model of muscle degeneration disorders. Current topics in developmental biology, 121, 83-109. DOI: https://doi.org/10.1016/bs.ctdb.2016.07.003

Mukhopadhyay, I., Chowdhuri, D. K., Bajpayee, M., & Dhawan, A. (2004). Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline Comet assay. Mutagenesis, 19(2), 85-90. DOI: https://doi.org/10.1093/mutage/geh007

Pletcher, S. D., Macdonald, S. J., Marguerie, R., Certa, U., Stearns, S. C., Goldstein, D. B., & Partridge, L. (2002). Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Current Biology, 12(9), 712-723. DOI: https://doi.org/10.1016/S0960-9822(02)00808-4

Arıca, Ş. Ç., Demirci, S., Özyılmaz, A., Öz, S., & Arslantaş, E. (2017). Bazı makroalglerin Drosophila melanogaster’in hayatta kalışı üzerine etkileri.

Sun Y, Yolitz J, Wang C, Spangler E, Zhan M, & Zou S. (2013). Aging studies in Drosophila melanogaster. In Biological Aging (pp. 77-93). Humana Press, Totowa, NJ. DOI: https://doi.org/10.1007/978-1-62703-556-9_7

Anupama KP, Shilpa O, Anet A, Siddanna TK, & Gurushankara HP. (2019). Convolvulus pluricaulis (Shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer's disease Drosophila model. Journal of Chemical Neuroanatomy. 95-115-122. DOI: https://doi.org/10.1016/j.jchemneu.2017.10.002

Quesada‐Calderón S, Bacigalupe LD, Toro‐Vélez AF, Madera‐Parra CA, Peña‐Varón MR, & Cárdenas‐Henao H. (2017). The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster. Ecology and evolution, 7(16), 6519-6526. DOI: https://doi.org/10.1002/ece3.3172

Morley, E. J., Hirsch, H. V., Hollocher, K., & Lnenicka, G. A. (2003). Effects of chronic lead exposure on the neuromuscular junction in Drosophila larvae. Neurotoxicology, 24(1), 35-41. DOI: https://doi.org/10.1016/S0161-813X(02)00095-5

Graham, J. H., Roe, K. E., & West, T. B. (1993). Effects of lead and benzene on the developmental stability of Drosophila melanogaster. Ecotoxicology, 2(3), 185-195. DOI: https://doi.org/10.1007/BF00116423

Dhawan, A., Bajpayee, M. M., Pandey, A. K., & Parmar, D. (2003). Protocol for the single cell gel electrophoresis/comet assay for rapid genotoxicity assessment. Sigma, 1077(1), 1-10.

Olive PL, & Banáth JP. (2006). The comet assay: a method to measure DNA damage in individual cells. Nature Protocols | VOL.1 NO.1: 23-29. DOI: https://doi.org/10.1038/nprot.2006.5

Virgolini, M. B., & Aschner, M. (2021). Molecular mechanisms of lead neurotoxicity. In Advances in neurotoxicology (Vol. 5, pp. 159-213). Academic Press. DOI: https://doi.org/10.1016/bs.ant.2020.11.002

Doğan, Ö., & Avcı, A. (2018). Bitkilerle tedavi ve ilaç etkileşimleri. Turkiye Klinikleri Journal of Public Health-Special Topic, 4(1), 49-54.

Peterson, E. K., & Long, H. E. (2018). Experimental protocol for using Drosophila as an invertebrate model system for toxicity testing in the laboratory. JoVE (Journal of Visualized Experiments), (137), e57450. DOI: https://doi.org/10.3791/57450-v

Mackay, T. F., & Anholt, R. R. (2006). Of flies and man: Drosophila as a model for human complex traits. Annu. Rev. Genomics Hum. Genet., 7, 339-367. DOI: https://doi.org/10.1146/annurev.genom.7.080505.115758

Olakkaran, S., Antony, A., Purayil, A. K., Kumbar, S. T., & Puttaswamygowda, G. H. (2018). Lead modulated Heme synthesis inducing oxidative stress mediated Genotoxicity in Drosophila melanogaster. Science of the Total Environment, 634, 628-639. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.004

Shilpa, O., Anupama, K. P., Antony, A., & Gurushankara, H. P. (2021). Lead (Pb) induced oxidative stress as a mechanism to cause neurotoxicity in Drosophila melanogaster. Toxicology, 462, 152959. DOI: https://doi.org/10.1016/j.tox.2021.152959

Carmona, E. R., Creus, A., & Marcos, R. (2011). Genotoxicity testing of two lead-compounds in somatic cells of Drosophila melanogaster. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 724(1-2), 35-40. DOI: https://doi.org/10.1016/j.mrgentox.2011.05.008

Liu, Z. H., Shang, J., Yan, L., Wei, T., Xiang, L., Wang, H. L., ... & Xiao, G. (2020). Oxidative stress caused by lead (Pb) induces iron deficiency in Drosophila melanogaster. Chemosphere, 243, 125428. DOI: https://doi.org/10.1016/j.chemosphere.2019.125428

Nanda, K. P., Kumari, C., Dubey, M., & Firdaus, H. (2019). Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. Chemosphere, 236, 124349. DOI: https://doi.org/10.1016/j.chemosphere.2019.124349

Niveditha, S., Deepashree, S., Ramesh, S. R., & Shivanandappa, T. (2017). Sex differences in oxidative stress resistance in relation to longevity in Drosophila melanogaster. Journal of Comparative Physiology B, 187, 899-909. DOI: https://doi.org/10.1007/s00360-017-1061-1

Esquivel, A. R., Douglas, J. C., Loughran, R. M., Rezendes, T. E., Reed, K. R., Cains, T. H., ... & Paddock, B. E. (2020). Assessing the influence of curcumin in sex-specific oxidative stress, survival and behavior in Drosophila melanogaster. Journal of Experimental Biology, 223(22), jeb223867. DOI: https://doi.org/10.1242/jeb.223867

Boroja, T., Katanić, J., Rosić, G., Selaković, D., Joksimović, J., Mišić, D., ... & Mihailović, V. (2018). Summer savory (Satureja hortensis L.) extract: Phytochemical profile and modulation of cisplatin-induced liver, renal and testicular toxicity. Food and Chemical Toxicology, 118, 252-263. DOI: https://doi.org/10.1016/j.fct.2018.05.001

Mašković, P., Veličković, V., Mitić, M., Đurović, S., Zeković, Z., Radojković, M., ... & Vujić, J. (2017). Summer savory extracts prepared by novel extraction methods resulted in enhanced biological activity. Industrial Crops and Products, 109, 875-881. DOI: https://doi.org/10.1016/j.indcrop.2017.09.063

Chen, Q., Gan, Z., Zhao, J., Wang, Y., Zhang, S., Li, J., & Ni, Y. (2014). In vitro comparison of antioxidant capacity of cumin (Cuminum cyminum L.) oils and their main components. LWT-Food Science and technology, 55(2), 632-637. DOI: https://doi.org/10.1016/j.lwt.2013.09.017

Şahin, F., Karaman, I., Güllüce, M., Öğütçü, H., Şengül, M., Adıgüzel, A., ... & Kotan, R. (2003). Evaluation of antimicrobial activities of Satureja hortensis L. Journal of ethnopharmacology, 87(1), 61-65. DOI: https://doi.org/10.1016/S0378-8741(03)00110-7

Abdel-Moneim, A. M., El-Toweissy, M. Y., Ali, A. M., Awad Allah, A. A. M., Darwish, H. S., & Sadek, I. A. (2015). Curcumin ameliorates lead (Pb2+)-induced hemato-biochemical alterations and renal oxidative damage in a rat model. Biological trace element research, 168(1), 206-220 DOI: https://doi.org/10.1007/s12011-015-0360-1

Fierascu, I., Dinu-Pirvu, C. E., Fierascu, R. C., Velescu, B. S., Anuta, V., Ortan, A., & Jinga, V. (2018). Phytochemical profile and biological activities of Satureja hortensis L.: A review of the last decade. Molecules, 23(10), 2458.). DOI: https://doi.org/10.3390/molecules23102458

Hassan, E., Kahilo, K., Kamal, T., Hassan, M., & Elgawish, M. S. (2019). The protective effect of epigallocatechin-3-gallate on testicular oxidative stress in lead-induced toxicity mediated by Cyp19 gene/estradiol level. Toxicology, 422, 76-83. DOI: https://doi.org/10.1016/j.tox.2019.04.015

Li, F., Liu, Z. H., Tian, X., Liu, T., Wang, H. L., & Xiao, G. (2020). Black soybean seed coat extract protects Drosophila melanogaster against Pb toxicity by promoting iron absorption. Journal of Functional Foods, 75, 104201. DOI: https://doi.org/10.1016/j.jff.2020.104201

Downloads

Published

2025-05-29

How to Cite

Donmez, G. (2025). Protective effects of Satureja hortensis on DNA damage and reproduction performance in lead-exposed Drosophila melanogaster. Journal of Applied Biological Sciences, 19(2), 81–87. https://doi.org/10.71336/jabs.1438

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.