A phylogenetic analysis of the polychaeta based on mitochondrial CO1 and 16S rRNA gene sequences
DOI:
https://doi.org/10.71336/jabs.1454Keywords:
CO1, non-monophyletic, polychaeta, 16S rRNAAbstract
Annelids, a phylum of segmented worms, are a diverse group inhabiting terrestrial, freshwater, and marine environments. Recent molecular studies challenge traditional classifications, revealing the inclusion of taxa like Echiura, Sipuncula, and non-monophyletic relationships within the group. This study utilized mitochondrial cytochrome c oxidase I (CO1) and 16S ribosomal RNA (16S rRNA) gene sequences to construct phylogenetic trees for 50 Polychaeta species using maximum likelihood analysis. CO1 gene exhibited limitations in phylogenetic relationship, while 16S rRNA excelled in elucidating broader taxonomic relationships with strong support for evolutionary relationships. Results reaffirmed the non-monophyly of Polychaeta and highlighted their distinct evolutionary patterns, such as independent lineage development within the Polynoidae family. These findings contribute to understanding polychaete diversity and evolutionary history, emphasizing the need for integrating multiple molecular markers for comprehensive phylogenetic analysis.
References
[1] Weigert, A. & Bleidorn, C. (2016): Current status of annelid phylogeny. Organisms Diversity and Evolution 16:345–362. https://doi.org/10.1007/s13127-016-0265-7.
[2] Struck, T.H., Schult, N., Kusen, T., Hickman, E., Bleidorn,C., McHugh, D.,& Halanych, K.M. (2017): Annelid phylogeny and the status of Sipuncula and Echiura. BioMed Central Ecology and Evolution 7(57). https://doi.org/10.1186/1471-2148-7-5.7.
[3] Bleidorn, C., Vogt, L. & Bartolomaeus, T. (2003): A contribution to sedentary polychaete phylogeny using 18S rRNA sequence data. Journal of Zoological Systematics and Evolutionary Research 41: 186-195. https://doi.org/10.1046/j.1439-0469.2003.00212.x.
[4] Olsgard, F., Brattegard, T. & Holthe, T. (2003): Polychaetes as surrogates for marine biodiversity: lower taxonomic resolution and indicator groups. Biodiversity and Conservation 12, 1033–1049. https://doi.org/10.1023/A:1022800405253
[5] Chan, A.H.E., Saralamba, N., Saralamba, S., Ruangsittichai, J., & Thaenkham, U. (2022): The potential use of mitochondrial ribosomal genes (12S and 16S) in DNA barcoding and phylogenetic analysis of trematodes. BioMed Central Genomics 23, 104. https://doi.org/10.1186/s12864-022-08302-4.
[6] Halanych, K. & Janosik, A. (2006): A review of molecular markers used for annelid phylogenetics. Integrative and Comparative Biology, 46 (4): 533–543. https://doi.org/10.1093/icb/icj052
[7] Huerta-Cepas, J., Serra, F., & Bork, P. (2016): ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Molecular Biology and Evolution 33(6): 1635–1638. https://doi.org/10.1093/molbev/msw046
[8] [8]Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011): Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular systems biology 7, 539. https://doi.org/10.1038/msb.2011.75 .
[9] Price, M. N., Dehal, P. S., & Arkin, A. P. (2010): Fast Tree 2--approximately maximum-likelihood trees for large alignments. Public Library of Science ONE 5(3): e9490. https://doi.org/10.1371/journal.pone.0009490.
[10] Almeida, W. O., Christoffersen, M. L., Amorim, D. S., Garraffoni, A. R. S., & Silva, G. S. (2003): Polychaeta, annelida, and articulata are not monophyletic: articulating the metameria (Metazoa, Coelomata). Revista Brasileira de Zoologia 20(1) 1-7. https://doi.org/10.1590/S0101-81752003000100006.
[11] Alström, P., Höhna, S., Gelang, M. Ericson, P.G.P., & Olsson, U. ((2011): Non-monophyly and intricate morphological evolution within the avian family cettiidae revealed by multilocus analysis of a taxonomically densely sampled dataset. BMC Ecology and Evolution 11, 352 https://doi.org/10.1186/1471-2148-11-352.
[12] Kobayashi, G., Itoh, H., & Nakajima, N. (2023): First report of the mitogenome of the invasive reef-building polychaete Ficopomatus enigmaticus (Annelida: Serpulidae) and a cryptic lineage from the Japanese Archipelago. Molecular Biology Reports 50, 7183–7196. https://doi.org/10.1007/s11033-023-08647-3.
[13] Canales-Aguirre, C.B., Rozbaczylo, N., & Hernández, C.E. (2011): Genetic identification of benthic polychaetes in a biodiversity hotspot in the southeast pacific. Revista De Biologia Marina Y Oceanografia 46, 89-94. http://dx.doi.org/10.4067/S0718-19572011000100014
[14] Palumbi, S., Martin, A., Romano, S., McMillan, W.O., Stice, L., Grabowski, G. (1991): The simple fool's guide to PCR. Version 2. Distributed by author, 1991(pg. 1-46)
[15] Hall, K. A., Hutchings, P. A., & Colgan, D. J. (2004): Further phylogenetic studies of the polychaeta using 18S rDNA sequence data. Journal of the Marine Biological Association of the United Kingdom 84(5): 949–960. https://doi:10.1017/S0025315404010240h.
[16] Zanol, J., Carrera-Parra, L. F., & Steiner, T. M. (2021): The current state of Eunicida systematics and biodiversity. Diversity 13(2), 74. https://doi.org/10.3390/d13020074

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.