Molecular cloning and expression of Bacillus cereus xylanase gene in E. coli bl21
DOI:
https://doi.org/10.71336/jabs.1499Keywords:
Xylanase gene, Escherichia coli BL21, Polymerase Chain Reaction, Bacillus cereus, pET 21c( )Abstract
Recombinant production of bacterial xylanases offers a cost-effective and industrially relevant alternative to native enzyme extraction. In this study, the xylanase gene from Bacillus Cereus (~1071 bp) was amplified by PCR and cloned into the pET-21c(+) expression vector (~5441 bp) for heterologous expression in Escherichia coli BL21. Ligation and transformation were confirmed through colony PCR and restriction digestion with BamHI, producing a distinct band of 6512 bp, consistent with the recombinant plasmid. The successful cloning and verification demonstrate the feasibility of generating functional recombinant xylanase in E. coli. Bacterial xylanases, unlike fungal enzymes, exhibit high stability across a broad pH range and elevated temperatures, enhancing their suitability for industrial applications such as pulp and paper processing, food, and biofuel production. This work establishes a foundation for large-scale recombinant xylanase production and provides a platform for further optimization of fermentation conditions to improve enzyme yield. Future studies will focus on optimizing expression levels, scaling up production, and evaluating the enzyme’s performance under industrial process conditions.
References
1. Hao, Z., Mohnen, D. (2014): A review of xylan and lignin biosynthesis: foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Critical Reviews in Biochemistry and Molecular Biology 49: 212–241. https://doi.org/10.3109/10409238.2014.889651
2. Álvarez-Martínez, I., Pfrengle, F. (2025): On the structure, conformation and reactivity of β-1,4-linked plant cell wall glycans: why are xylan polysaccharides or furanosyl substituents easier to hydrolyze than cellulose? Cellulose 32: 1–21. https://doi.org/10.1007/s10570-025-06424-y
3. Pentari, C., Zerva, A., Dimarogona, M., Topakas, E. (2023): The xylobiohydrolase activity of a GH30 xylanase on natively acetylated xylan may hold the key for the degradation of recalcitrant xylan. Carbohydrate Polymers 305: 120527. https://doi.org/10.1016/j.carbpol.2022.120527
4. Pineda-Mendoza, R. M., Zúñiga, G., López, M. F., Hidalgo-Lara, M. E., Cano-Ramírez, C. (2022): Rahnella sp., a dominant symbiont of the core gut bacteriome of Dendroctonus species, has metabolic capacity to degrade xylan by bifunctional xylanase–ferulic acid esterase. Frontiers in Microbiology 13: 911269.. https://doi.org/10.3389/fmicb.2022.911269
5. Dar, F. M., Dar, P. M. (2022): Fungal xylanases for different industrial applications. In: Industrially Important Fungi for Sustainable Development, Volume 2: Bioprospecting for Biomolecules. Springer International Publishing, Cham, pp. 515–539. https://doi.org/10.1007/978-3-030-85603-8_14
6. Kumar, V., Dangi, A. K., Shukla, P. (2018): Engineering thermostable microbial xylanases toward its industrial applications. Molecular Biotechnology 60: 226–235. https://doi.org/10.1007/s12033-018-0059-6
7. Azizoglu, U., Argentel-Martínez, L., Peñuelas-Rubio, O., Herrera-Sepúlveda, A., Ibal, J. C., Sharafi, R., Sansinenea, E. (2025): Natural products produced by the species of Bacillus cereus group: Recent updates. Journal of Basic Microbiology 65: e2400666.. https://doi.org/10.1002/jobm.202400666
8. Kaur, D., Joshi, A., Sharma, V., Batra, N., Sharma, A. K. (2023): An insight into microbial sources, classification, and industrial applications of xylanases: A rapid review. Biotechnology and Applied Biochemistry 70: 1489–1503. https://doi.org/10.1002/bab.2469
9. SG, S. A., Rajasekaran, R. (2024): Exploring Bacillus species xylanases for industrial applications: Screening via thermostability and reaction modelling. Journal of Molecular Modeling 30: 242. https://doi.org/10.1007/s00894-024-06048-2
10. Naveed, M., Tahir, F., Aziz, T., Waseem, M., Makhdoom, S. I., Ali, N., Alasmari, A. F. (2024): Molecular identification of Proteus mirabilis, Vibrio species leading to CRISPR-Cas9 modification of tcpA and UreC genes causing cholera and UTI. Scientific Reports 14: 8563. https://doi.org/10.1038/s41598-024-59340-9
11. Naveed, M., Waseem, M., Aziz, T., Hassan, J. U., Makhdoom, S. I., Ali, U., Alsahammari, A. (2023): Identification of bacterial strains and development of an mRNA-based vaccine to combat antibiotic resistance in Staphylococcus aureus via in vitro and in silico approaches. Biomedicines 11: 1039. https://doi.org/10.3390/biomedicines11041039
12. Naveed, M., Hanif, N., Aziz, T., Waseem, M., Alharbi, M., Alshammari, A., Alasmari, A. F. (2025): Insight into molecular and mutational scrutiny of epilepsy-associated gene Gabrg2 leading to novel computer-aided drug designing. Scientific Reports 15: 6770. https://doi.org/10.1038/s41598-025-91505-y
13. Hao, R., Li, X., Wang, N., Zhang, M., Li, M., Xu, Y., Xu, W. (2025): Optimized plasmid extraction through controlled temperature, prolonged alkaline lysis, and gentle mixing. Journal of Chromatography B 124646. https://doi.org/10.1016/j.jchromb.2025.124646
14. Naveed, M., Jabeen, K., Aziz, T., Hanif, N., Waseem, M., Khan, A. A., Alasmari, A. F. (2025): Computational design of a multi-epitope vaccine against Staphylococcus warneri for combatting recurrent UTIs and skin infections. Molecular Biotechnology 1: 1–14. https://doi.org/10.1007/s12033-025-01477-7
15. Malgas, S., Mafa, M. S., Mkabayi, L., Pletschke, B. I. (2019): A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation. World Journal of Microbiology and Biotechnology 35: 187. https://doi.org/10.1007/s11274-019-2765-z
16. Dutta, B., Banerjee, A., Chakraborty, P., Bandopadhyay, R. (2018): In silico studies on bacterial xylanase enzyme: Structural and functional insight. Journal of Genetic Engineering and Biotechnology 16: 749–756. https://doi.org/10.1016/j.jgeb.2018.05.003
17. Sun, Q. Y., Ding, L. W., He, L. L., Sun, Y. B., Shao, J. L., Luo, M., Xu, Z. F. (2009): Culture of Escherichia coli in SOC medium improves the cloning efficiency of toxic protein genes. Analytical Biochemistry 394: 144–146. https://doi.org/10.1016/j.ab.2009.07.023
18. Abbasian, M., Seyedi, H. A. E., Tabatabaei, B. E. S., Arab-Bafrani, Z., Mofid, M. R., & Zareie, R. (2017). Recombinant production, purification and characterization of vessel dilator in E. coli. Protein Expression and Purification, 129, 75-83. https://doi.org/10.1016/j.pep.2016.09.010
19. Qiu, Z., Shi, P., Luo, H., Bai, Y., Yuan, T., Yang, P., Yao, B. (2010): A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme and Microbial Technology 46: 506–512. https://doi.org/10.1016/j.enzmictec.2010.02.003
20. Mandal, A., Kar, S., Das Mohapatra, P. K., Maity, C., Pati, B. R., Mondal, K. C. (2012): Regulation of xylanase biosynthesis in Bacillus cereus BSA1. Applied Biochemistry and Biotechnology 167: 1052–1060. https://doi.org/10.1007/s12010-011-9523-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.