Comparative antibacterial activity of silver nanoparticles from Blumia lacera and Neolamarckia cadamba against methicillin-resistant Staphylococcus aureus
DOI:
https://doi.org/10.71336/jabs.1371Keywords:
AgNPs, Ultraviolet visible spectroscopy, ethicillin-resistant Staphylococcus aureus (MRSA), Green synthesis, Antimicrobial activityAbstract
Silver nanoparticles (AgNPs) have shown promise as antibiotic-free antibacterial agents. This study comparatively evaluates the antibacterial activity of AgNPs synthesized from Blumia lacera and Neolamarckia cadamba against methicillin-resistant Staphylococcus aureus (MRSA). Staphylococcus aureus isolates obtained from various clinical samples, including wound swabs and pus, were phenotypically and genotypically confirmed as MRSA. AgNPs were characterized using UV-visible spectroscopy, and their antibacterial efficacy was assessed via disc diffusion, agar cup methods, and time-kill curves. Results demonstrated that Blumia lacera AgNPs exhibited remarkably significant (P < 0.009) antibacterial activity by showing greater zones of inhibition compared to Neolamarckia cadamba. These findings highlight the potential of green-synthesized AgNPs as effective agents against MRSA.
References
Yang, D., Ding, M., Song, Y., Hu, Y., Xiu, W., Yuwen, L., Xie, Y. (2023): Nanotherapeutics with immunoregulatory functions for the treatment of bacterial infection. Biomaterials Research. 27(1):1-26. https://doi.org/10.1186/s40824-023-00405-7. DOI: https://doi.org/10.1186/s40824-023-00405-7
Alsolami, A., Ghasab, A.L., Alharbi, M. S., Bashir, A. I., Saleem, M., Sye Khaja, A. S., Aldakheel, DF. (2023): Community-Acquired Methicillin-Resistant Staphylococcus aureus in Hospitals: Age-Specificity and Potential Zoonotic–Zooanthroponotic Transmission Dynamics. Diagnostics. 13(12):2089. https://doi.org/10.3390/diagnostics13122089. DOI: https://doi.org/10.3390/diagnostics13122089
Aneja, A., Johnson, J., Prochaska, E. C., Milstone, A. M. (2024): Microbiome dysbiosis: a modifiable state and target to prevent Staphylococcus aureus infections and other diseases in neonates. Journal of Perinatology. 44(1):125-130. https://doi.org/10.1038/s41372-023-01810-5. DOI: https://doi.org/10.1038/s41372-023-01810-5
Ahovan, Z. A., Esmaeili, Z., Eftekhari, B. S., Khosravimelal, S., Alehosseini, M., Orive, G., Dolatshahi-Pirouz, A. (2022): Antibacterial smart hydrogels: New hope for infectious wound management. Materials Today, Bio. 100499. https://doi.org/10.1016/j.mtbio.2022.100499. DOI: https://doi.org/10.1016/j.mtbio.2022.100499
Rumata, N. R., Djide, N. J., Frediansyah, A., Nurul, A. M., Mutair, A., Alhumaid, S., Rabaan, A. A. (2023): Progress and Challenges in Antimicrobial Resistance and Bacterial Vaccines. Biointerface Research in Applied Chemistry. 13(5):1-21. https://doi.org/10.33263/BRIAC135.489. DOI: https://doi.org/10.33263/BRIAC135.489
More, P. R., Pandit, S., Filippis, A. D., Franci, G., Mijakovic, I., Galdiero, M. (2023): Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms.11(2):369. https://doi.org/10.3390/microorganisms11020369. DOI: https://doi.org/10.3390/microorganisms11020369
Tamilarasi, G. P., Sabarees, G., Manikandan, K., Gouthaman, S., Alagarsamy, V., Solomon, V. R. (2023): Recent Trends in Electrospun Antibacterial Nanofibers for Chronic Wound Management. Current Nanomedicine (Formerly: Recent Patents on Nanomedicine). 13(3):159-187. http://dx.doi.org/10.2174/2468187313666230817151543. DOI: https://doi.org/10.2174/2468187313666230817151543
Menichetti, A., Mavridi-Printezi, A., Mordini, D., Montalti, M. (2023): Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. Journal of Functional Biomaterials. 14(5):244. https://doi.org/10.3390/jfb14050244.
Hosnedlova, B., Kabanov, D., Kepinska, M., Narayanan, V. H., Parikesit, A. A., Fernandez, C. B. (2022): Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli. Nanomaterials. 12(13):2183. https://doi.org/10.3390/nano12132183. DOI: https://doi.org/10.3390/nano12132183
Li, H., You, Q., Feng, X., Zheng, C., Zeng, X., Xu, H. (2023): Effective treatment of Staphylococcus aureus infection with silver nanoparticles and silver ions. Journal of Drug Delivery Science and Technology. 80:104165. https://doi.org/10.1016/j.jddst.2023.104165. DOI: https://doi.org/10.1016/j.jddst.2023.104165
Singh, M., Thakur, V., Kumar, V., Raj, M., Gupta, S., Devi, N., Upadhyay, S. K. (2022): Silver nanoparticles and its mechanistic insight for chronic wound healing: review on recent progress. Molecules. 27(17):5587. https://doi.org/10.3390/molecules27175587. DOI: https://doi.org/10.3390/molecules27175587
Lo, S., Mahmoudi, E., Fauzi, M. B. (2023): Applications of drug delivery systems, organic, and inorganic nanomaterials in wound healing. Discover Nano. 18(1):104. https://doi.org/10.1186/s11671-023-03880-y. DOI: https://doi.org/10.1186/s11671-023-03880-y
Moaness, M., Mabrouk, M., Ahmed, M. M., Das, D. B., Beherei, H. H. (2022). Novel zinc-silver nanocages for drug delivery and wound healing: Preparation, characterization and antimicrobial activities. International Journal of Pharmaceutics. 616:121559. https://doi.org/10.1016/j.ijpharm.2022.121559. DOI: https://doi.org/10.1016/j.ijpharm.2022.121559
Chopra, H., Mohanta, Y. K., Mahanta, S., Mohanta, T. K., Singh, I., Avula, S. K., Mallick, SP. (2023). Recent updates in nanotechnological advances for wound healing: A narrative review. Nanotechnology Reviews. 12(1):20230129. https://doi.org/10.1515/ntrev-2023-0129. DOI: https://doi.org/10.1515/ntrev-2023-0129
Khutade, K., Shah, H., Patil, S., Patel, H. (2023): Validation of an Assessment of Chromogenic Media Against Conventional Culture Techniques for Isolation, Identification, and Direct Antibiotic Susceptibility Testing of Uropathogens in Resource-Poor Settings. International Journal of Pharmacy and Biological Sciences (IJPBS).13(4):116–122. http://dx.doi.org/10.5281/zenodo.10516488.
Asubel, F. M., Brent, R.., Kinston, R., Moore, D. E., Smith, J., Strunt, K. (1999): Protocols in Molecular Biology. 4th Edn, editor. New York: John wiley and sons Inc.
Jonas, D., Speck, M., Daschner, F., Grundmann, H. (2002): Rapid PCR-Based Identification of Methicillin-Resistant Staphylococcus aureus from screening swabs. Journal Microbiology. 40:1821–1823.
https://doi.org/10.1128/jcm.40.5.1821-1823.2002. DOI: https://doi.org/10.1128/JCM.40.5.1821-1823.2002
Ninganagouda, S., Rathod, V., Jyoti, H., Singh, D., Prema, K., Haq, M. U. (2013): Extracellular biosynthesis of silver nanoparticles using Aspergillus flavus and their antimicrobial activity against gram-negative MDR strains. International Journal of Pharma and Bio Sciences. 4(2):222-229. www.ijpbs.net
Audtarat, S., Hongsachart, P., Dasri, T., Chio-Srichan, S., Soontaranon, S., Wongsinlatam, W., Sompech ,S. (2022): Green synthesis of silver nanoparticles loaded into bacterial cellulose for antimicrobial application. Nanocomposites. 8(1):34-46. https://doi.org/10.1080/20550324.2022.2055375. DOI: https://doi.org/10.1080/20550324.2022.2055375
Haque, M. A., Imamura, R., Brown, G. A., Krishnamurthi, V. R., Niyonshuti, II., Marcelle, T., Mathurin, L. E. (2017). An experiment-based model quantifying antimicrobial activity of silver nanoparticles on Escherichia coli. RSC advances. 7(89):56173-56182. https://doi.org/10.1039/C7RA10495B. DOI: https://doi.org/10.1039/C7RA10495B
Jena, P., Mohanty, S., Mallick, R., Jacob, B., Sonawane, A. (2012): Toxicity and antibacterial assessment of chitosancoated silver nanoparticles on human pathogens and macrophages. International Journal of Nanomedicine. 1805-1818. https://doi.org/10.2147/ijn.s28077. DOI: https://doi.org/10.2147/IJN.S28077
Gupta, K., Hazarika, S. N., Saikia, D., Namsa, N. D., Mandal, M. (2014): One step green synthesis and antimicrobial and anti-biofilm properties of Psidium guajava L. leaf extract-mediated silver nanoparticles. Materials Letters. 125:67-70. http://dx.doi.org/10.1016%2Fj.matlet.2014.03.134. DOI: https://doi.org/10.1016/j.matlet.2014.03.134
Khutade, K., Chanda, S., Megha, G. K., Shah, H. (2022): Evaluation of Different Phenotypic Methods for Detection of Biofilm Formation among the Clinical Isolates. International Journal of Current Microbiology and Applied Sciences 11(10): 40-48. https://doi.org/10.20546/ijcmas.2022.1110.005. DOI: https://doi.org/10.20546/ijcmas.2022.1110.005
Bharathi, D., Vasantharaj, S., Bhuvaneshwari, V. (2018): Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity. Materials Research Express. 5(5):055404. https://ui.adsabs.harvard.edu/link_gateway/2018MRE.....5e5404B/doi:10.1088/2053-1591/aac2ef. DOI: https://doi.org/10.1088/2053-1591/aac2ef
Singh, D., Rathod, V., Ninganagouda, S., Hiremath, J., Singh, A. K., Mathew, J. (2014): Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorganic Chemistry and Applications.1-8.408021.https://doi.org/10.1155/2014/408021 DOI: https://doi.org/10.1155/2014/408021
Bruna, T., Maldonado-Bravo, F., Jara, P., Caro, N. (2021): Silver Nanoparticles and Their Antibacterial Applications. International Journal of Molecular Sciences, 22(13), 7202. https://doi.org/10.3390/ijms22137202. DOI: https://doi.org/10.3390/ijms22137202
Bahrami, M., Shirazi, P. S., Moradi, F., Hadi, N., Navid, Sabbaghi., Sahba Eslaminezhad. (2024): How Nanomaterials Act against Bacterial Structures? A Narrative Review by Focusing on Molecular Mechanism of the Nanoparticles. Microbial Pathogenesis, 196, 107002–107002. https://doi.org/10.1016/j.micpath.2024.107002. DOI: https://doi.org/10.1016/j.micpath.2024.107002
Mondal, S., Chakraborty, S., Manna, S., Mandal, S. M. (2024): Antimicrobial Nanoparticles: Current Landscape and Future Challenges. RSC Pharmaceutics. 1, 388-402. https://doi.org/10.1039/D4PM00032C. DOI: https://doi.org/10.1039/D4PM00032C
Saha, Nakshi., Aklima, A., Sabonty, Bhattacharjee., Sabbir, Howlader., Abid, Hasan,. Harinarayan, Das. (2024): Phyto-extract-mediated Synthesis of Silver Nanoparticles using Blumea lacera Leaf Extract and Antimicrobial Activity Screening. Malaysian Journal of Chemistry. 26(2):96-109. https://doi.org/10.55373/mjchem.v26i2.96. DOI: https://doi.org/10.55373/mjchem.v26i2.96
Maheswari, J., Anjum, M. R., Sankari, M., Narasimha, G., Krishna, S. B. N., Kishori, B. (2023): Green synthesis, characterization and biological activities of silver nanoparticles synthesized from Neolamarkia cadamba. ADMET & DMPK. 11(4): 573–585. https://doi.org/10.5599/admet.1793. DOI: https://doi.org/10.5599/admet.1793
Haffner, S. M., & Malmsten, M. (2017). Membrane interactions and antimicrobial effects of inorganic nanoparticles. Advances in Colloid and Interface Science. 248: 105-128. https://doi.org/10.1016/j.cis.2017.07.029. DOI: https://doi.org/10.1016/j.cis.2017.07.029
Menichetti, A., Mavridi-Printezi, A., Mordini, D., Montalti, M. (2023): Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. Journal of Functional Biomaterials. 14(5):244. https://doi.org/10.3390/jfb14050244. DOI: https://doi.org/10.3390/jfb14050244
Abbas, R., Luo, J., Qi, X., Naz, A., Khan, I. A., Liu, H., Wei, J. (2024): Silver nanoparticles: synthesis, structure, properties and applications. Nanomaterials. 14(17), 1425. https://doi.org/10.3390/nano14171425. DOI: https://doi.org/10.3390/nano14171425
Ameh, T., Zarzosa, K., Dickinson, J., Braswell, W. E., Sayes, C. M. (2023): Nanoparticle surface stabilizing agents influence antibacterial action. Frontiers in Microbiology. 14: 1119550. https://doi.org/10.3389/fmicb.2023.1119550. DOI: https://doi.org/10.3389/fmicb.2023.1119550
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.