Effects of lead heavy metal exposure on anatomical structure of bread wheat (Triticum aestivum L. cv. Krasunia Odeska)
DOI:
https://doi.org/10.71336/jabs.1472Keywords:
Bread wheat, lead, heavy metal stress, anatomical structure, adaptationAbstract
This study aimed to investigate the effects of various concentrations of lead (Pb) heavy metal on the anatomical structure of bread wheat (Triticum aestivum L. cv. Krasunia Odeska). Wheat seedlings were cultivated under controlled conditions and treated with different concentrations of Pb (0, 10, 15 mM). After 28 days, root, stem, and leaf samples were collected for anatomical analysis. Pb stress caused thickening of the epidermis, exodermis, and endodermis in the roots, increased the diameter of cortex cells, and decreased the diameter of the stele and vascular bundles. In the stem, the epidermis and collenchyma cells thickened, while the diameter of the tracheids in the vascular bundles decreased. In the leaves, the length of the epidermis cells decreased, the length and width of bulliform cells increased, the sclerenchyma tissue thickened, and the thickness of the phloem in the vascular bundles decreased. In conclusion, lead stress induced significant anatomical changes in the root, stem, and leaf tissues of bread wheat. These alterations can be interpreted as the plant's attempts to develop tolerance to Pb stress.
References
[1] Nagajyoti, P.C., Lee, K.D., Sreekanth, T.V.M. (2010): Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett. 8, 199–216. https://doi.org/10.1007/s10311-010-0297-8
[2] Shen, Z.J., Xu, D.C., Chen, Y.S., Zhang, Z. (2017): Heavy metals translocation and accumulation from the rhizosphere soils to the edible parts of the medicinal plant Fengdan (Paeonia ostii) grown on a metal mining area, China. Ecotoxicol Environ Saf. 143, 19–27. https://doi.org/10.1016/j.ecoenv.2017.04.042
[3] Sun, Y., Zhou, Q., Xie, X., Liu, R. (2010): Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J Hazard Mater. 174, 455–462. https://doi.org/10.1016/j.jhazmat.2009.09.074
[4] Verma, S., Dubey, R.S. (2003): Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science. 164, 645–655. https://doi.org/10.1016/S0168-9452(03)00022-0
[5] Malik, B., Pirzadah, T.B., Tahir, I., Hakeem, K.R., Rather, I.A., Sabir, J.S.M., Rehman, R.U. (2021): Lead and aluminium-induced oxidative stress and alteration in the activities of antioxidant enzymes in chicory plants. Sci Hortic. 278, 1–10. https://doi.org/10.1016/j.scienta.2020.109847
[6] Majer, B.J., Tscherko, D., Paschke, A., Wennrich, R., Kundi, M., Kandeler, E., Knasmüller, S. (2002): Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutat Res. 515, 111–124. https://doi.org/10.1016/S1383-5718(02)00004-9
[7] Serengin I.V, Ivanov V.B. (2001): Physiological Aspects of Cadmium and Lead Toxic Effects. Russian Journal of Plant Physiology. 48, 606–630. https://doi.org/10.1023/A:1016719901147
[8] Pandey, P., Tripathi, A.K. (2011): Effect of heavy metals on morphological and biochemical characteristics of Albizia procera (Roxb.) Benth. seedlings. Int J Environ Sci. 1, 1009–1018.
[9] Yadav, V., Arif, N., Kováč, J., Singh, V.P., Tripathi, D.K., Chauhan, D.K., Vaculík, M. (2021): Structural modifications of plant organs and tissues by metals and metalloids in the environment: A review.
https://doi.org/10.1016/j.plaphy.2020.11.047
[10] Farzadfar, S., Zarinkamar, F. (2012): Morphological And Anatomical Responses Of Matricaria Chamomilla Plants To Cadmium And Calcium. Adv Environ Biol. 6, 1603–1609.
[11] Vaculík, M., Konlechner, C., Langer, I., Adlassnig, W., Puschenreiter, M., Lux, A., Hauser, M.T. (2012): Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environmental Pollution. 163, 117–126. https://doi.org/10.1016/j.envpol.2011.12.031
[12] Martinka, M., Vaculík, M., Lux, A. (2014): Plant cell responses to cadmium and zinc. Plant Cell Monographs. 22, 209–246. https://doi.org/10.1007/978-3-642-41787-0_7
[13] Hajihashemi, S., Mbarki, S., Skalicky, M., Noedoost, F., Raeisi, M., Brestic, M. (2020).: Effect of wastewater irrigation on photosynthesis, growth, and anatomical features of two wheat cultivars (Triticum aestivum L.). Water (Switzerland). 12, https://doi.org/10.3390/w12020607
[14] Chaudhari, J., Patel, K., Patel, V. (2016): Exploring the Toxic Effects of Pb & Ni on Stem Anatomy of Pisum Sativum L. International Journal of Chemical, Environmental & Biological Sciences. 4, 28–32
[15] Zarinkamar, F., Saderi, Z., Soleimanpour, S. (2013): Excluder strategies in response to Pb toxicity in Matricaria chamomilla. Adv Biores. 4, 39–49. https://doi.org/10.13189/eer.2013.010101
[16] Ribeiro, V.E., Pereira, M.P., de Castro, E.M., Corrêa, F.F., Cardoso, M. das G., Pereira, F.J. (2019): Enhanced essential oil and leaf anatomy of Schinus molle plants under lead contamination. Ind Crops Prod. 132, 92–98. https://doi.org/10.1016/j.indcrop.2019.02.014
[17] Cooper, R. (2015): Re-discovering ancient wheat varieties as functional foods. J Tradit Complement Med. 5, 138–143. https://doi.org/10.1016/j.jtcme.2015.02.004
[18] Ran, J., Wang, D., Wang, C., Zhang, G., Zhang, H. (2016): Heavy metal contents, distribution, and prediction in a regional soil-wheat system. Science of the Total Environment.544, 422–431 (2016). https://doi.org/10.1016/j.scitotenv.11.105
[19] Ozyigit, I.I., Baktibekova, D., Hocaoğlu-Özyigit, A., Kurmanbekova, G., Chekirov, K., Yalcin, İ.E. (2021): The effects of cadmium on growth, some anatomical and physiological parameters of wheat (Triticum aestivum L.). International Journal of Life Sciences and Biotechnology. 4, 235–253. https://doi.org/10.38001/ijlsb.833553
[20] Nazir, A., Rafique, F., Ahmed, K., Khan, S.A., Khan, N., Akbar, M., Zafar, M. (2021): Evaluation of heavy metals effects on morpho-anatomical alterations of wheat (Triticum aestivum L.) seedlings. Microsc Res Tech. 84, 2517–2529. https://doi.org/10.1002/jemt.23801
[21] Tupan, C.I., Azrianingsih, R.(2016): Accumulation and deposition of lead heavy metal in the tissues of roots, rhizomes and leaves of seagrass Thalassia hemprichii (Monocotyledoneae, Hydrocharitaceae). AACL Bioflux. 9, 580–589.
[22] Zanganeh, R., Jamei, R., Rahmani, F. (2021): Response of maize plant to sodium hydrosulfide pretreatment under lead stress conditions at early stages of growth. Cereal Res Commun. 49, 267–276. https://doi.org/10.1007/s42976-020-00095-0
[23] Nazir, A., Rafique, F., Ahmed, K., Khan, S.A., Khan, N., Akbar, M., Zafar, M. (2021): Evaluation of heavy metals effects on morpho-anatomical alterations of wheat (Triticum aestivum L.) seedlings. Microsc Res Tech. 84, 2517–2529. https://doi.org/10.1002/jemt.23801
[24] Lux, A., Luxova, M., Abe, J., Morita, S. (2004): Root cortex: structural and functional variability and responses to environmental stress. Root Research. 13, 117–131. https://doi.org/10.3117/rootres.13.117
[25] Gomes, M.P., de Sáe Melo Marques, T.C.L.L., de Oliveira Gonçalves Nogueira, M., de Castro, E.M., Soares, Â.M. (2011): Ecophysiological and anatomical changes due to uptake and accumulation of heavy metal in Brachiaria decumbens. Scientia Agri. 68, 566–573. https://doi.org/10.1590/S0103-90162011000500009
[26] Ahmad, S.H., Reshi, Z., Ahmad, J., Iqbal, M. (2005): Morpho-Anatomical Responses of Trigonella foenum graecum Linn. to Induced Cadmium and Lead Stress. Journal of Plant Biology. 48, 64–84. https://doi.org/10.1007/BF03030566
[27] Maksimović, I., Kastori, R., Krstić, L., Luković, J. (2007): Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biol Plant. 51, 589–592. https://doi.org/10.1007/s10535-007-0129-2
[28] Yadav, V., Arif, N., Kováč, J., Singh, V.P., Tripathi, D.K., Chauhan, D.K., Vaculík, M. (2021): Structural modifications of plant organs and tissues by metals and metalloids in the environment: A review. Plant Physiology and Biochemistry. 159, 100–112. https://doi.org/10.1016/j.plaphy.2020.11.047
[29] Sridhar, M., B., B., Han, F.X., Diehl, S. V., Monts, D.L., Su, Y. (2011): Effect of phytoaccumulation of arsenic and chromium on structural and ultrastructural changes of brake fern (Pteris vittata). Brazilian Journal of Plant Physiology. 23, 285–293. https://doi.org/00.0000/S00000-000-0000-0
[30] Talukdar, D. (2013): Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L. seedlings and its amelioration by exogenous nitric oxide. Physiology and Molecular Biology of Plants. 19, 69–79. https://doi.org/10.1007/s12298-012-0140-8
[31] Zhao, Y., Hu, C., Wang, X., Qing, X., Wang, P., Zhang, Y., Zhang, X., Zhao, X. (2019): Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) by regulating root morphology and metal element uptake. Ecotoxicol Environ Saf. 173, 314–321. https://doi.org/10.1016/j.ecoenv.2019.01.090
[32] Singh, H.P., Batish, D.R., Kohli, R.K., Arora, K. (2007): Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul. 53, 65–73. https://doi.org/10.1007/s10725-007-9205-z
[33] Supriatno, S., Chairunnisa, C., Rahmatan, H. (2019): Effects of Heavy Metal Lead (Pb) Exposure on Chlorophyll Content and Anatomic Structure of rice (Oryza sativa L.).. https://doi.org/10.4108/eai.3-10-2018.2284289
[34] MacFarlane, G.R., Burchett, M.D. (2000): Cellular distribution of copper, lead and zinc in the grey mangrove, Avicennia marina (Forsk.) Vierh. Aquat Bot. 68, 45–59. https://doi.org/10.1016/S0304-3770(00)00105-4
[35] Al-Saadi, M., Al-Asaadi, M., Al-Waheeb, H. (2013): The effect of some heavy metals accumulation on physiological and anatomical characteristic of some Potamogeton L . plant. Journal of Ecology and Environmental Sciences. 4, 100–108
[36] Alves, R.I.S., Sampaio, C.F., Nadal, M., Schuhmacher, M., Domingo, J.L., Segura-Muñoz, S.I. (2014): Metal concentrations in surface water and sediments from Pardo River, Brazil: Human health risks. Environ Res. 133, 149–155. https://doi.org/10.1016/j.envres.2014.05.012
[37] Raju, C.H.A.I., Yugandhar, N.M., Sirisha Naidu, S., Beena, C.H., Tukaram Bai, M. (2020): Removal of manganese from synthetic waste waters with Parthenium Hysteroporous bud and leaf powder and optimization using Artificial Neural Networks and Response Surface Methodology. Mater Today Proc. 42, 851–861. https://doi.org/10.1016/j.matpr.2020.11.595
[38] Samad, R., Rashid, P., Karmoker, J. (2021): Anatomical changes in chickpea (Cicer arietinum L.) under aluminium stress condition. Dhaka University Journal of Biological Sciences. 30, 187–196. https://doi.org/10.3329/dujbs.v30i2.54645
[39] Khan, I., Awan, S.A., Rizwan, M., Ali, S., Hassan, M.J., Brestic, M., Zhang, X., Huang, L. (2021): Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol Environ Saf. 222, 1–15. https://doi.org/10.1016/j.ecoenv.2021.112510
[40] Jahan Liza, S., Jahan Shethi, K., Rashid, P. (2020): Effects of cadmium on the anatomical structures of vegetative organs of chickpea (Cicer arientinum L.). Dhaka University Journal of Biological Sciences. 29-1. https://doi.org/10.3329/dujbs.v29i1.46530
[41] Samad, R., Rashid, P., Karmoker, J. (2020): Anatomical Responses of Rice (Oryza Sativa L.) to Aluminium Toxicity. Journal of Bangladesh Academy of Sciences. 43, 123–131. https://doi.org/10.3329/jbas.v43i2.45733
[42] Turner, N.C., Jones, M.M. (1980): Adaptation of Plants to Water and High Temperaturen Stress. In: Turner, N.C., and Kramer, P.J. (eds.) Turgor maintenance by osmotic adjustment: Are view and evaluation. pp. 87–103. CAB International, Wallingford
[43] Sandalio, L.M., Dalurzo, H.C., Gó Mez, M., Romero-Puertas, M.C., Del Río, L.A. (2001): Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botan. 52, 2115–2126. https://doi.org/10.1093/jexbot/52.364.2115
[44] De Jesus, D.D.S., De Azevedo, B.O., Pinelli, M.S., Korn, M.D.G.A., De Azevedo Neto, A.D., Lucchese, A.M., De Oliveira, L.M. (2016): Growth and volatile compounds of Martianthus leucocephalus exposed to heavy metal stress. Ciencia Rural. 46, 2110–2117. https://doi.org/10.1590/0103-8478cr20150576
[45] Liza, S.J., Shethi, K.J., Rashid, P. (2020): Effects of cadmium on the anatomical structures of vegetative organs of chickpea (Cicer arientinum L.). Dhaka University Journal of Biological Sciences. 29, 45–52. https://doi.org/10.3329/dujbs.v29i1.46530
[46] Gwayed, S.M.H., Almagharabi, O.A. (2013): Effect of copper and cadmium on germination and anatomical structure of leaf and root seedling in maize (Zea mays L). Australian Journal of Basic and Applied Sciences. 7, 548–555
[47] Mousavi Kouhi, S.M., Lahouti, M., Ganjeali, A., Entezari, M.H. (2016): Anatomical and ultrastructural responses of brassica napus after long-term exposure to excess zinc. Turkish Journal of Biology. 40, 652–660. https://doi.org/10.3906/biy-1411-13
[48] Sandalio, L.M., Gómez, M., Romero‐Puertas, M.C., del Río, L.A. (2001): Cadmium‐induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot. 52, 2115–2126. https://doi.org/10.1093/jexbot/52.364.2115
[49] Weryszko-Chmielewska, E., Chwil, M. (2005): Lead-Induced Histological and Ultrastructural Changes in the Leaves of Soybean (Glycine max (L.) Merr.). Soil Sci Plant Nutr. 51, 203–212. https://doi.org/10.1111/j.1747-0765.2005.tb00024.x
[50] Waycott, M., Procaccini, G., Les, D.H., Reusch, T.B.H. (2006): Seagrass Evolution, Ecology and Conservation: A Genetic Perspective. In: Larkum, A.W.D., Orth, R.J., and Duarte, C.M. (eds.) Seagrasses: Biology, ecology and conservation. pp. 39–50. Duarte, C. M, Dordrecht, The Netherlands.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Applied Biological Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.